The effect of immunization schedule with the malaria vaccine candidate RTS,S/AS01E on protective efficacy and anti-circumsporozoite protein antibody avidity in African infants

Anthony Ajua, Bertrand Lell, Selidji Todagbe Agnandji, Kwaku Poku Asante, Seth Owusu-Agyei, Grace Mwangoka, Maxmilliam Mpina, Nahya Salim, Marcel Tanner, Salim Abdulla, Johan Vekemans, Erik Jongert, Marc Lievens, Pierre Cambron, Chris F Ockenhouse, Peter G Kremsner, Benjamin Mordmüller, Anthony Ajua, Bertrand Lell, Selidji Todagbe Agnandji, Kwaku Poku Asante, Seth Owusu-Agyei, Grace Mwangoka, Maxmilliam Mpina, Nahya Salim, Marcel Tanner, Salim Abdulla, Johan Vekemans, Erik Jongert, Marc Lievens, Pierre Cambron, Chris F Ockenhouse, Peter G Kremsner, Benjamin Mordmüller

Abstract

Background: The malaria vaccine RTS,S induces antibodies against the Plasmodium falciparum circumsporozoite protein (CSP) and the concentration of Immunoglobulin G (IgG) against the repeat region of CSP following vaccination is associated with protection from P. falciparum malaria. So far, only the quantity of anti-CSP IgG has been measured and used to predict vaccination success, although quality (measured as avidity) of the antigen-antibody interaction shall be important since only a few sporozoites circulate for a short time after an infectious mosquito bite, likely requiring fast and strong binding.

Methods: Quantity and avidity of anti-CSP IgG in African infants who received RTS,S/AS01E in a 0-1-2-month or a 0-1-7-month schedule in a phase 2 clinical trial were measured by enzyme-linked immunosorbent assay. Antibody avidity was defined as the proportion of IgG able to bind in the presence of a chaotropic agent (avidity index). The effect of CSP-specific IgG concentration and avidity on protective efficacy was modelled using Cox proportional hazards.

Results: After the third dose, quantity and avidity were similar between the two vaccination schedules. IgG avidity after the last vaccine injection was not associated with protection, whereas the change in avidity following second and third RTS,S/AS01E injection was associated with a 54% risk reduction of getting malaria (hazard ratio: 0.46; 95% confidence interval (CI): 0.22-0.99) in those participants with a change in avidity above the median. The change in anti-CSP IgG concentration following second and third injection was associated with a 77% risk reduction of getting malaria (hazard ratio: 0.23, 95% CI: 0.11-0.51).

Conclusions: Change in IgG response between vaccine doses merits further evaluation as a surrogate marker for RTS,S efficacy.

Trial registration: ClinicalTrials.gov Identifier NCT00436007 .

Figures

Figure 1
Figure 1
CONSORT study flow chart.
Figure 2
Figure 2
Box-plot and single measurements of absolute AI at second and third vaccination using two vaccination schedules (012 or 017).
Figure 3
Figure 3
Box-plot and single measurements of difference in AI (dAI) between second and third vaccination using two vaccination schedules (012 or 017). Note that for the analysis of dAI only paired samples were used (n = 179).
Figure 4
Figure 4
Kaplan Meier plot of malaria episodes over time in participants classified as having high (black) or low (grey) dAI.

References

    1. Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BGNO, Kabwende AL, et al. A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. N Engl J Med. 2012;367:2284–95. doi: 10.1056/NEJMoa1208394.
    1. Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365:1863–75. doi: 10.1056/NEJMoa1102287.
    1. RTS,S Clinical Trials Partnership Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014;11:e1001685. doi: 10.1371/journal.pmed.1001685.
    1. Olotu A, Lusingu J, Leach A, Lievens M, Vekemans J, Msham S, et al. Efficacy of RTS, S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis. 2011;11:102–9. doi: 10.1016/S1473-3099(10)70262-0.
    1. Asante KP, Abdulla S, Agnandji S, Lyimo J, Vekemans J, Soulanoudjingar S, et al. Safety and efficacy of the RTS, S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial. Lancet Infect Dis. 2011;11:741–9. doi: 10.1016/S1473-3099(11)70100-1.
    1. Aponte JJ, Aide P, Renom M, Mandomando I, Bassat Q, Sacarlal J, et al. Safety of the RTS, S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled phase I/IIb trial. Lancet. 2007;370:1543–51. doi: 10.1016/S0140-6736(07)61542-6.
    1. Egan JE, Weber JL, Ballou WR, Hollingdale MR, Majarian WR, Gordon DM, et al. Efficacy of murine malaria sporozoite vaccines: implications for human vaccine development. Science. 1987;236:453–6. doi: 10.1126/science.3551073.
    1. Porter MD, Nicki J, Pool CD, Debot M, Illam RM, Brando C, et al. Transgenic parasites stably expressing full-length Plasmodium falciparum circumsporozoite protein as a model for vaccine down-selection in mice using sterile protection as an endpoint. Clin Vaccine Immunol. 2013;20:803–10. doi: 10.1128/CVI.00066-13.
    1. Fairley H. Chemotherapeutic suppression and prophylaxis in malaria. Trans R Soc Trop Med Hyg. 1945;38:311–55. doi: 10.1016/0035-9203(45)90038-1.
    1. Reed RC, Louis-Wileman V, Wells RL, Verheul AF, Hunter RL, Lal AA. Re-investigation of the circumsporozoite protein-based induction of sterile immunity against Plasmodium berghei infection. Vaccine. 1996;14:828–36. doi: 10.1016/0264-410X(95)00175-Z.
    1. Rickman LS, Gordon DM, Wistar R, Jr, Krzych U, Gross M, Hollingdale MR, et al. Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine. Lancet. 1991;337:998–1001. doi: 10.1016/0140-6736(91)92659-P.
    1. Agnandji ST, Asante KP, Lyimo J, Vekemans J, Soulanoudjingar SS, Owusu R, et al. Evaluation of the safety and immunogenicity of the RTS, S/AS01E malaria candidate vaccine when integrated in the expanded program of immunization. J Infect Dis. 2010;202:1076–87. doi: 10.1086/656190.
    1. Clement F, Dewar V, Van Braeckel E, Desombere I, Dewerchin M, Swysen C, et al. Validation of an enzyme-linked immunosorbent assay for the quantification of human IgG directed against the repeat region of the circumsporozoite protein of the parasite Plasmodium falciparum. Malar J. 2012;11:384. doi: 10.1186/1475-2875-11-384.
    1. Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, Chantavanich P, et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg. 1991;45:297–308.
    1. Busse CE, Czogiel I, Braun P, Arndt PF, Wardemann H. Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur J Immunol. 2014;44:597–603. doi: 10.1002/eji.201343917.
    1. Muellenbeck MF, Ueberheide B, Amulic B, Epp A, Fenyo D, Busse CE, et al. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. J Exp Med. 2013;210:389–99. doi: 10.1084/jem.20121970.
    1. Bachmann MF, Kalinke U, Althage A, Freer G, Burkhart C, Roost H, et al. The role of antibody concentration and avidity in antiviral protection. Science. 1997;276:2024–7. doi: 10.1126/science.276.5321.2024.
    1. Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS, S Malaria Vaccine Evaluation Group. N Engl J Med. 1997;336:86–91. doi: 10.1056/NEJM199701093360202.

Source: PubMed

3
Abonnieren