Canine Detection of the Volatilome: A Review of Implications for Pathogen and Disease Detection

Craig Angle, Lowell Paul Waggoner, Arny Ferrando, Pamela Haney, Thomas Passler, Craig Angle, Lowell Paul Waggoner, Arny Ferrando, Pamela Haney, Thomas Passler

Abstract

The volatilome is the entire set of volatile organic compounds (VOC) produced by an organism. The accumulation of VOC inside and outside of the body reflects the unique metabolic state of an organism. Scientists are developing technologies to non-invasively detect VOC for the purposes of medical diagnosis, therapeutic monitoring, disease outbreak containment, and disease prevention. Detection dogs are proven to be a valuable real-time mobile detection technology for the detection of VOC related to explosives, narcotics, humans, and many other targets of interests. Little is known about what dogs are detecting when searching for biological targets. It is important to understand where biological VOC originates and how dogs might be able to detect biological targets. This review paper discusses the recent scientific literature involving VOC analysis and postulates potential biological targets for canine detection. Dogs have shown their ability to detect pathogen and disease-specific VOC. Future research will determine if dogs can be employed operationally in hospitals, on borders, in underserved areas, on farms, and in other operational environments to give real-time feedback on the presence of a biological target.

Keywords: canine detection; disease detection; volatile organic compound; volatilome.

References

    1. Walker DB, Walker JC, Cavnar PJ, Taylor JL, Pickel DH, Hall SB, et al. Naturalistic quantification of canine olfactory sensitivity. Appl Anim Behav Sci (2006) 97(2):241–54.10.1016/j.applanim.2005.07.009
    1. Hung R, Lee S, Bennett JW. Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol (2015) 99(8):3395–405.10.1007/s00253-015-6494-4
    1. Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark (2015) 2015:981458.10.1155/2015/981458
    1. de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, et al. A review of the volatiles from the healthy human body. J Breath Res (2014) 8(1):014001.10.1088/1752-7155/8/1/014001
    1. Aksenov AA, Gojova A, Zhao W, Morgan JT, Sankaran S, Sandrock CE, et al. Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: a cell’s “chemical odor fingerprint”. Chembiochem (2012) 13(7):1053–9.10.1002/cbic.201200011
    1. Amann A, Costello B, Miekisch W, Schubert J, Buszewski B, Pleil J, et al. The human volatilome: volatile organic compounds (VOC) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res (2014) 8:034001.10.1088/1752-7155/8/3/034001
    1. Bicchi C, Maffei M. The plant volatilome: methods of analysis. High-Throughput Phenotyping in Plants Methods in Molecular Biology. (2012). p. 289–310.
    1. Walker DB, Walker JC, Cavnar PJ, Taylor TL, Pickel DH, Hall SB, et al. Naturalistic quantification of canine olfactory sensitivity. Appl Anim Behav Sci (2006) 97(2):241–54.10.1016/j.applanim.2005.07.009
    1. Buljubasic F, Buchbauer G. The scent of human diseases: a review on specific volatile organic compounds as diagnostic biomarkers. Flavour Fragrance J (2015) 30:5–25.10.1002/ffj.3219
    1. Amann A, Costello B, Miekisch W, Schubert J, Buszewski B, Pleil J, et al. The human volatilome: volatile organic compounds (VOC) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res (2014) 8:034001.10.1088/1752-7155/8/3/034001
    1. Besa V, Teschler H, Kurth I, Khan AM, Zarogoulidis P, Baumbach JI, et al. Exhaled volatile organic compounds discriminate patients with chronic obstructive pulmonary disease from healthy subjects. Int J Chron Obstruct Pulmon Dis (2015) 10:399–406.
    1. Boots AW, Bos LD, van der Schee MP, van Schooten FJ, Sterk PJ. Exhaled molecular fingerprinting in diagnosis and monitoring: validating volatile promises. Trends Mol Med (2015) 21(10):633–44.10.1016/j.molmed.2015.08.001
    1. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol (2013) 40(6):463–71.10.3109/03014460.2013.807878
    1. Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites (2015) 5:140–63.10.3390/metabo5010140
    1. Angle TC, Passler T, Waggoner PL, Fischer TD, Rogers B, Galik PK, et al. Real-time detection of a virus using detection dogs. Front Vet Sci (2016) 2:79.10.3389/fvets.2015.00079
    1. Petry NM, Wagner JA, Rash CJ, Hood KK. Perceptions about professionally and non-professionally trained hypoglycemia detection dogs. Diabetes Res Clin Pract (2015) 109(2):389–96.10.1016/j.diabres.2015.05.023
    1. Jezierski T, Walczak M, Ligor T, Rudnicka J, Buszewski B. Study of the art: canine olfaction used for cancer detection on the basis of breath odour. Perspectives and limitations. J Breath Res (2015) 9(2):027001.10.1088/1752-7155/9/2/027001
    1. Abd El Qader A, Lieberman D, Shemer Avni Y, Svobodin N, Lazarovitch T, Sagi O, et al. Volatile organic compounds generated by cultures of bacteria and viruses associated with respiratory infections. Biomed Chromatogr (2015) 29(12):1783–90.10.1002/bmc.3494
    1. Bos LDJ, Sterk PJ, Schultz MJ. Volatile metabolites of pathogens: a systematic review. PLoS Pathog (2013) 9:e1003311.10.1371/journal.ppat.1003311
    1. Schivo M, Aksenov AA, Linderholm AL, McCartney MM, Simmons J, Harper RW, et al. Volatile emanations from in vitro airway cells infected with human rhinovirus. J Breath Res (2014) 8:037110.10.1088/1752-7155/8/3/037110
    1. Aksenov AA, Sandrock CE, Zhao WX, Sankaran S, Schivo M, Harper R, et al. Cellular scent of influenza virus infection. Chembiochem (2014) 15:1040–8.10.1002/cbic.201300695
    1. Mashir A, Paschke KM, van Duin D, Shrestha NK, Laskowski D, Storer MK, et al. Effect of the influenza A (H1N1) live attenuated intranasal vaccine on nitric oxide (FENO) and other volatiles in exhaled breath. J Breath Res (2011) 5(3):037107.10.1088/1752-7155/5/3/037107
    1. Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem (2011) 150(3):257–66.10.1093/jb/mvr090
    1. Sonoda H, Kohnoe S, Yamazato T, Satoh Y, Morizono G, Shikata K, et al. Colorectal cancer screening with odour material by canine scent detection. Gut (2011) 60:814–9.10.1136/gut.2010.218305
    1. McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther (2006) 5:30–9.10.1177/1534735405285096
    1. Bomers MK, van Agtmael MA, Luik H, van Veen MC, Vandenbroucke-Grauls CMJE, Smulders YM. Using a dog’s superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study. Br Med J (2012) 345:e7396.10.1136/bmj.e7396
    1. Alasaad S, Permunian R, Gakuya F, Mutinda M, Soriguer RC, Rossi L. Sarcoptic-mange detector dogs used to identify infected animals during outbreaks in wildlife. BMC Vet Res (2012) 8:110.10.1186/1746-6148-8-110
    1. Moser E, McCulloch M. Canine scent detection of human cancers: a review of methods and accuracy. J Vet Behav (2010) 5:145–52.10.1016/j.jveb.2010.01.002
    1. Craven BA, Settles GS. A computational and experimental investigation of the human thermal plume. J Fluid Eng (2006) 128(6):1251–8.
    1. Craven BA, Hargather MJ, Volpe JA, Frymire SP, Settles GS. Design of a high-throughput chemical trace detection portal that samples the aerodynamic wake of a walking person. IEEE Sensors J (2014) 14(6):1852–66.10.1109/JSEN.2014.2304538
    1. Jia X, McLaughlin JB, Derksen J, Ahmadi G. Simulation of a mannequin’s thermal plume in a small room. Comput Math Appl (2013) 65(2):287–95.10.1016/j.camwa.2011.06.056

Source: PubMed

3
Abonnieren