Scent dog identification of samples from COVID-19 patients - a pilot study

Paula Jendrny, Claudia Schulz, Friederike Twele, Sebastian Meller, Maren von Köckritz-Blickwede, Albertus Dominicus Marcellinus Erasmus Osterhaus, Janek Ebbers, Veronika Pilchová, Isabell Pink, Tobias Welte, Michael Peter Manns, Anahita Fathi, Christiane Ernst, Marylyn Martina Addo, Esther Schalke, Holger Andreas Volk, Paula Jendrny, Claudia Schulz, Friederike Twele, Sebastian Meller, Maren von Köckritz-Blickwede, Albertus Dominicus Marcellinus Erasmus Osterhaus, Janek Ebbers, Veronika Pilchová, Isabell Pink, Tobias Welte, Michael Peter Manns, Anahita Fathi, Christiane Ernst, Marylyn Martina Addo, Esther Schalke, Holger Andreas Volk

Abstract

Background: As the COVID-19 pandemic continues to spread, early, ideally real-time, identification of SARS-CoV-2 infected individuals is pivotal in interrupting infection chains. Volatile organic compounds produced during respiratory infections can cause specific scent imprints, which can be detected by trained dogs with a high rate of precision.

Methods: Eight detection dogs were trained for 1 week to detect saliva or tracheobronchial secretions of SARS-CoV-2 infected patients in a randomised, double-blinded and controlled study.

Results: The dogs were able to discriminate between samples of infected (positive) and non-infected (negative) individuals with average diagnostic sensitivity of 82.63% (95% confidence interval [CI]: 82.02-83.24%) and specificity of 96.35% (95% CI: 96.31-96.39%). During the presentation of 1012 randomised samples, the dogs achieved an overall average detection rate of 94% (±3.4%) with 157 correct indications of positive, 792 correct rejections of negative, 33 incorrect indications of negative or incorrect rejections of 30 positive sample presentations.

Conclusions: These preliminary findings indicate that trained detection dogs can identify respiratory secretion samples from hospitalised and clinically diseased SARS-CoV-2 infected individuals by discriminating between samples from SARS-CoV-2 infected patients and negative controls. This data may form the basis for the reliable screening method of SARS-CoV-2 infected people.

Keywords: COVID-19; Olfactory detection; SARS-CoV-2; Saliva; Scent detection dogs; Volatile organic compounds.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Diagnostic specificity and sensitivity by dog and for all dogs together. Whiskers show 95% confidence intervals

References

    1. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020. 10.1001/jama.2020.12839.
    1. McCulloch M, Jezierski T, Broffmann M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther. 2006;5:30–39. doi: 10.1177/1534735405285096.
    1. Guest C, Pinder M, Doggett M, Squires C, Affara M, Kandeh B, et al. Trained dogs identify people with malaria parasites by their odour. Lancet Infect Dis. 2019;19:578–580. doi: 10.1016/S1473-3099(19)30220-8.
    1. Taylor M, McCready J, Broukhanski G, Kirpalaney S, Lutz H, Powis J. Using dog scent detection as a point-of-care tool to identify toxigenic clostridium difficile in stool. Open Forum Infect Dis. 2018;5:1–4. doi: 10.1093/ofid/ofy179.
    1. Angle C, Waggoner LP, Ferrando A, Haney P, Passler T. Canine detection of the volatilome: a review of implications for pathogen and disease detection. Front Vet Sci. 2016;3:1–7. doi: 10.3389/fvets.2016.00047.
    1. Angle TC, Passler T, Waggoner PL, Fischer TD, Rogers B, Galik PK, et al. Real-time detection of a virus using detection dogs. Front. Vet. Sci. 2016;2:1–6. doi: 10.3389/fvets.2015.00079.
    1. Koivusalo M, Reeve C. Biomedical scent detection dogs: would they pass as a health technology? Pet Behav Sci. 2018;6:1–7.
    1. Amann A, Costello BDL, Miekisch W, Schubert J, Buszewski B, Pleil J, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014. 10.1088/1752-7155/8/3/034001.
    1. Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150(3):257–266. doi: 10.1093/jb/mvr090.
    1. Institut Pasteur, Paris. Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2. 2020 Mar. Available from: . Accessed 31 Mar 2020.
    1. Etievant S, Bal A, Escurret V, Brengel-Pesce K, Bouscambert M, Cheynet V, et al. Sensitivity assessment of SARS-CoV-2 PCR assays developed by WHO referral Laboratories. medRxiv 2020.05.03.20072207; 10.1101/2020.05.03.20072207.
    1. Hoffmann:. Accessed 31 Mar 2020.
    1. Hoffmann B, Depner K, Schirrmeier H, Beer M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J Virol Methods. 2006;136:200–209. doi: 10.1016/j.jviromet.2006.05.020.
    1. Sit THC, Brackmann CJ, Ip SM, Tam KWS, Law PYT, To EMW, et al. Infection of dogs with ARS-CoV-2. Nature 2020; 10.1038/s41586-020-2334-5 (2020).
    1. Trevethan R. Sensitivity, specificity, and predictive values: foundations, Pliabilities, and pitfalls in research and practice. Front Pub Health. 2017;5:307. doi: 10.3389/fpubh.2017.00307.
    1. Cohen AN, Kessel B. 2020. False positives in reverse transcription PCR testing for SARS-CoV-2. medRxiv; doi: 10.1101/2020.04.26.20080911.
    1. Steppert C, Steppert I, Becher G, Sterlacci W, Bollinger T. 2020. Rapid detection of SARS-CoV-2 infection by multicapillary column coupled ion mobility spectrometry (MCC-IMS) of breath. A proof of concept study medRxiv; doi:10.1101/2020.06.30.20143347.
    1. Riley S, Ainslie KEC, Eales O, Jeffrey B, Walter CE, Atchison C, et al. 2020. Community prevalence of SARS-CoV-2 virus in England during may 2020: REACT study. medRxiv; 10.1101/2020.07.10.20150524.
    1. Leroy EM, Gouilh MA, Brugère-Picoux J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health. 2020. 10.1016/j.onehlt.2020.100133.
    1. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368(6494):1016–1020. doi: 10.1126/science.abb7015.

Source: PubMed

3
Abonnieren