The sum of gains and losses of genes encoding the protein tyrosine kinase targets predicts response to multi-kinase inhibitor treatment: Characterization, validation, and prognostic value

Xiaojun Jiang, Daniel Pissaloux, Christelle De La Fouchardiere, Françoise Desseigne, Qing Wang, Valery Attignon, Marie-Eve Fondrevelle, Arnaud De La Fouchardiere, Maurice Perol, Philippe Cassier, Christelle Seigne, David Perol, Isabelle Ray-Coquard, Pierre Meeus, Jerome Fayette, Aude Flechon, Axel Le Cesne, Nicolas Penel, Olivier Tredan, Jean-Yves Blay, Xiaojun Jiang, Daniel Pissaloux, Christelle De La Fouchardiere, Françoise Desseigne, Qing Wang, Valery Attignon, Marie-Eve Fondrevelle, Arnaud De La Fouchardiere, Maurice Perol, Philippe Cassier, Christelle Seigne, David Perol, Isabelle Ray-Coquard, Pierre Meeus, Jerome Fayette, Aude Flechon, Axel Le Cesne, Nicolas Penel, Olivier Tredan, Jean-Yves Blay

Abstract

Validated predictive biomarkers for multi-tyrosine kinase inhibitors (MTKI) efficacy are lacking. We hypothesized that interindividual response variability is partially dependent on somatic DNA copy number alterations (SCNAs), particularly those of genes encoding the protein tyrosines targeted by MTKI (called target genes). Genomic alterations were investigated in MTKI responsive and non responsive patients with different histological subtypes included in the ProfiLER protocol (NCT 01774409). From March 2013 to August 2014, 58 patients with advanced cancer treated with one of 7 MTKIs were included in the ProfiLER trial and split into one discovery cohort (n = 13), and 2 validation cohorts (n = 12 and 33). An analysis of the copy number alterations of kinase-coding genes for each of 7 MTKIs was conducted. A prediction algorithm (SUMSCAN) based on the presence of specific gene gains (Tumor Target Charge, TTC) and losses (Tumor Target Losses, TTL) was conceived and validated in 2 independent validation cohorts. MTKI sensitive tumors present a characteristic SCNA profile including a global gain profile, and specific gains for target genes while MTKI resistant tumors present the opposite. SUMSCAN favorable patients achieved longer progression-free and overall survival. This work shows that the copy number sum of kinase-coding genes enables the prediction of response of cancer patients to MTKI, opening a novel paradigm for the treatment selection of these patients.

Trial registration: ClinicalTrials.gov NCT01774409.

Keywords: biomarker; chromosomal instability; multi-kinase inhibitor; regorafenib.

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
a. Copy-number alteration pattern of the 18 regorafenib target genes in the discovery cohor. The SCNA pattern of the 18 target genes was displayed as a heatmap. Top and bottom parts show the grouped results of the 6 regorafenib clinical benefit positive and the 7 regorafenib resistant tumors, respectively. The tumor/normal log2 ratios categories for different copy-number alterations levels were defined as in the online methods. b. Copy-number alteration pattern of the 18 regorafenib target genes in the validation cohort I. Top and bottom parts show the grouped results of the 5 tumors with regorafenib clinical benefit and the 7 tumors without clinical regorafenib benefits, respectively. c. Sum of total gains and deletions in the regorafenib clinical benefit positive and the clinical benefit negative tumors. There are significantly more gene gains in tumors having a clinical benefit than in the resistant ones (Top). d. Integral analysis of copy-number change pattern of the 18 regorafenib target genes in 25 patients. Gene gain events in red and gene deletion events in green. e. SUMSCAN Algorithm 1). TTC: tumor target charge, sum of gains on target genes; 2). Number of gains at target genes* versus number of losses at target genes 3) If there are more losses at target genes than gains, the tumor is predicted as resistant. All gain/loss events were equally considered. f. PFS and OS curve of 25 patients treated with regorafenib.
Figure 2. Differences concerning gain and loss…
Figure 2. Differences concerning gain and loss frequencies between patients with regorafenib clinical benefits and those without clinical benefits
a. A significant difference in the gain frequencies was observed for the DDR2, NTRK1 and FLT4 genes. b. Specific loss on EPHA2 was remarkably frequent in the regorafenib resistant tumors.
Figure 3. Validation II in 33 patients…
Figure 3. Validation II in 33 patients treated by one of the 6 other MTKIs
a. Copy-number alteration pattern of the target genes of 6 MTKIs (Sorafenib, sunitinib, pazopanib, axitinib, vandetanib and cabozantinib) in the validation cohort: Top and bottom parts show the results of the 20 tumors with clinical benefits and the 13 tumors without clinical benefits, respectively. b. Sum of total gains and deletions in the validation cohort II. There are significantly less gene deletions and more gene gains in the tumors having the clinical benefits compared to those without clinical benefits. c. and d. PFS and OS curve of 33 patients treated with one of the 6 MTKIs in the first-line MTKI settings. The patients with a favorable SUMSCAN had a progression free survival benefit. e. and f. PFS and OS curve of 22 patients treated by MTKI in the second-line MTKI settings. Patients with a favorable SUMSCAN achieved a better PFS and OS.

References

    1. Demetri GD, Van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, Desai J, Fletcher CD, George S, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. The Lancet. 2006;368:1329–1338.
    1. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New England Journal of Medicine. 2007;356:115–124.
    1. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, et al. Sorafenib in advanced hepatocellular carcinoma. New England Journal of Medicine. 2008;359:378–390.
    1. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, double-blind, placebo-controlled trial. The lancet oncology. 2009;10:25–34.
    1. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouché O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomized, placebo-controlled, phase 3 trial. The Lancet. 2013;381:303–312.
    1. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, Bauman JE, Martins RG. Phase II Study of Daily Sunitinib in FDG-PET-Positive, Iodine-Refractory Differentiated Thyroid Cancer and Metastatic Medullar Carcinoma of the Thyroid with Functional Imaging Correlation. Clinical Cancer Research. 2010;16:5260–5268.
    1. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarbá JJ, Chen M, McCann L, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. Journal of Clinical Oncology. 2010;28:1061–1068.
    1. Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, Kane MA, Sherman E, Kim S, Bycott P, Tortorici M, Shalinsky DR, Liau KF, Cohen RB. Axitinib is an active treatment for all histological subtypes of advanced thyroid cancer: results from a phase II study. Journal of Clinical Oncology. 2008;26:4708–4713.
    1. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, Hohenberger P, Leahy M, von Mehren M, Joensuu H, Badalamenti G, Blackstein M, Le Cesne A, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. The Lancet. 2013;381:295–302.
    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.
    1. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, Elledge SJ. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155:948–962.
    1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine. 2011;344:1031–1037.
    1. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. Journal of Clinical Oncology. 2003;21:4342–4349.
    1. Debiec-Rychter M, Dumez H, Judson I, Wasag B, Verweij J, Brown M, Dimitrijevic S, Sciot R, Stul M, Vranck H, Scurr M, Hagemeijer A, et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumors entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. European Journal of Cancer. 2004;40:689–695.
    1. Miller AJ, Mihm MC., Jr Melanoma. New England Journal of Medicine. 2006;355:51–65.
    1. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB. Inhibition of mutated, activated BRAF in metastatic melanoma. New England Journal of Medicine. 2010;363:809–819.
    1. Kelleher FC, McDermott R. The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene. European Journal of Cancer. 2010;46:2357–2368.
    1. Peña C, Lathia C, Shan M, Escudier B, Bukowski RM. Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III treatment approaches in renal cancer global evaluation trial. Clinical cancer research. 2010;16:4853–4863.
    1. Zhang Z, Zhou X, Shen H, Wang D, Wang Y. Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC medicine. 2009;7:41.
    1. Porta C, Paglino C, De Amici M, Quaglini S, Sacchi L, Imarisio I, Canipari C. Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib. Kidney international. 2010;77:809–815.
    1. Gruenwald V, Beutel G, Schuch-Jantsch S, Reuter C, Ivanyi P, Ganser A, Haubitz M. Circulating endothelial cells are an early predictor in renal cell carcinoma for tumor response to sunitinib. BMC cancer. 2010;10:695.
    1. Xu CF, Bing NX, Ball HA, Rajagopalan D, Sternberg CN, Hutson TE, de Souza P, Xue ZG, McCann L, King KS, Ragone LJ, Whittaker JC, Spraggs CF, et al. Pazopanib efficacy in renal cell carcinoma: evidence for predictive genetic markers in angiogenesis-related and exposure-related genes. Journal of clinical oncology. 2011;29:2557–2564.
    1. Tran HT, Liu Y, Zurita AJ, Lin Y, Baker-Neblett KL, Martin AM, Figlin RA, Hutson TE, Sternberg CN, Amado RG, Pandite LN, Heymach JV. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. The lancet oncology. 2012;13:827–837.
    1. Lenz HJ, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, et al. Analysis of plasma protein biomarkers from the CORRECT phase III study of regorafenib for metastatic colorectal cancer. Proceedings of ASCO-GI. 2013
    1. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews Genetics. 2010;11:685–696.
    1. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–724.
    1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–1558.
    1. Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, et al. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1) 2009
    1. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nature genetics. 2013;45:1127–1133.

Source: PubMed

3
Abonnieren