Novel low-cost thermotherapy for cutaneous leishmaniasis in Peru

Braulio M Valencia, David Miller, Richard S Witzig, Andrea K Boggild, Alejandro Llanos-Cuentas, Braulio M Valencia, David Miller, Richard S Witzig, Andrea K Boggild, Alejandro Llanos-Cuentas

Abstract

Thermotherapy is an accepted alternative therapy for new-world cutaneous leishmaniasis, but current heat-delivery modalities are too costly to be made widely available to endemic populations. We adapted a low-cost heat pack named the HECT-CL device that delivers safe, reliable, and renewable conduction heat. 25 patients with cutaneous leishmaniasis completed treatment with the device at an initial temperature of 52°C ± 2°C for 3 minutes to each lesion, repeated daily for 7 days, and were followed up for 6 months by direct observation. The overall definitive clinical cure rate was 60%. Concurrently, 13 patients meeting minimally significant exclusion criteria received identical compassionate use treatment with a cumulative definitive cure rate of 68.4%, 75% for those who had experienced CL relapse after prior antimonial treatment. Therapy was well tolerated. Reversible second-degree burns occurred in two patients and no bacterial super-infections were observed. HECT-CL is a promising treatment and deserves further study to verify its safety and efficacy as adjuvant and mono- therapy.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. HECT-CL device activation and verification.
Figure 1. HECT-CL device activation and verification.
(a) HECT-CL device before activation; (b) after activation, the supersaturated solution crystallizes; and (c) before application, temperature was measured using an infrared thermometer.
Figure 2. Study flow diagram.
Figure 2. Study flow diagram.
Figure 3. Kaplan-Meier curves.
Figure 3. Kaplan-Meier curves.
Figure 4. Response to HECT-CL therapy.
Figure 4. Response to HECT-CL therapy.
a) Patient 19 (PT) at baseline; b) Patient 19 thirty days after HECT-CL with M4 clinical status; c) Patient 19 six months after HECT-CL with complete re-epithelialization; d)Patient 5 (PT) at baseline; e) Patient 5 fifteen days after HECT-CL with M4 clinical status; f) Patient 5 cured six months after HECT-CL; g) Patient 27 (NT) at baseline; h) Patient 27 fifteen days after HECT-CL with M4 status; i) Patient 27 two months after HECT-CL with complete re-epithelialization of lesion but 2 subcutaneous tracts.

References

    1. Control of the leishmaniases. World Health Organ Tech Rep Ser 949: xii–186, xii-xiii, 1-186 back cover.
    1. Llanos-Cuentas A, Tulliano G, Araujo-Castillo R, Miranda-Verastegui C, Santamaria-Castrellon G, et al. (2008) Clinical and parasite species risk factors for pentavalent antimonial treatment failure in cutaneous leishmaniasis in Peru. Clin Infect Dis 46: 223–231.
    1. Saldanha AC, Romero GA, Merchan-Hamann E, Magalhaes AV, Macedo Vde O (1999) [A comparative study between sodium stibogluconate BP 88R and meglumine antimoniate in the treatment of cutaneous leishmaniasis. I. The efficacy and safety]. Rev Soc Bras Med Trop 32: 383–387.
    1. Saldanha AC, Romero GA, Guerra C, Merchan-Hamann E, Macedo Vde O (2000) [Comparative study between sodium stibogluconate BP 88 and meglumine antimoniate in cutaneous leishmaniasis treatment. II. Biochemical and cardiac toxicity]. Rev Soc Bras Med Trop 33: 383–388.
    1. Andersen EM, Cruz-Saldarriaga M, Llanos-Cuentas A, Luz-Cjuno M, Echevarria J, et al. (2005) Comparison of meglumine antimoniate and pentamidine for peruvian cutaneous leishmaniasis. Am J Trop Med Hyg 72: 133–137.
    1. Gasser RA Jr, Magill AJ, Oster CN, Franke ED, Grogl M, et al. (1994) Pancreatitis induced by pentavalent antimonial agents during treatment of leishmaniasis. Clin Infect Dis 18: 83–90.
    1. Douba M, Mowakeh A, Wali A (1997) Current status of cutaneous leishmaniasis in Aleppo, Syrian Arab Republic. Bull World Health Organ 75: 253–259.
    1. Grogl M, Thomason TN, Franke ED (1992) Drug resistance in leishmaniasis: its implication in systemic chemotherapy of cutaneous and mucocutaneous disease. Am J Trop Med Hyg 47: 117–126.
    1. Nonata R, Sampaio R, Marsden PD (1997) Mucosal leishmaniasis unresponsive to glucantime therapy successfully treated with AmBisome. Trans R Soc Trop Med Hyg 91: 77.
    1. Laniado-Laborin R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26: 223–227.
    1. Ameen M (2010) Cutaneous and mucocutaneous leishmaniasis: emerging therapies and progress in disease management. Expert Opin Pharmacother 11: 557–569.
    1. Berman JD, Neva FA (1981) Effect of temperature on multiplication of Leishmania amastigotes within human monocyte-derived macrophages in vitro. Am J Trop Med Hyg 30: 318–321.
    1. Sacks DL, Barral A, Neva FA (1983) Thermosensitivity patterns of Old vs. New World cutaneous strains of Leishmania growing within mouse peritoneal macrophages in vitro. Am J Trop Med Hyg 32: 300–304.
    1. Lobo IM, Soares MB, Correia TM, de Freitas LA, Oliveira MI, et al. (2006) Heat therapy for cutaneous leishmaniasis elicits a systemic cytokine response similar to that of antimonial (Glucantime) therapy. Trans R Soc Trop Med Hyg 100: 642–649.
    1. Navin TR, Arana BA, Arana FE, de Merida AM, Castillo AL, et al. (1990) Placebo-controlled clinical trial of meglumine antimonate (glucantime) vs. localized controlled heat in the treatment of cutaneous leishmaniasis in Guatemala. Am J Trop Med Hyg 42: 43–50.
    1. Velasco-Castrejon O, Walton BC, Rivas-Sanchez B, Garcia MF, Lazaro GJ, et al. (1997) Treatment of cutaneous leishmaniasis with localized current field (radio frequency) in Tabasco, Mexico. Am J Trop Med Hyg 57: 309–312.
    1. Willard RJ, Jeffcoat AM, Benson PM, Walsh DS (2005) Cutaneous leishmaniasis in soldiers from Fort Campbell, Kentucky returning from Operation Iraqi Freedom highlights diagnostic and therapeutic options. J Am Acad Dermatol 52: 977–987.
    1. Aronson NE, Wortmann GW, Byrne WR, Howard RS, Bernstein WB, et al. (2010) A randomized controlled trial of local heat therapy versus intravenous sodium stibogluconate for the treatment of cutaneous Leishmania major infection. PLoS Negl Trop Dis 4: e628.
    1. Vega JC, Sanchez BF, Montero LM, Montana R, Mahecha Mdel P, et al. (2009) The efficacy of thermotherapy to treat cutaneous leishmaniasis in Colombia: a comparative observational study in an operational setting. Trans R Soc Trop Med Hyg 103: 703–706.
    1. Reithinger R, Mohsen M, Wahid M, Bismullah M, Quinnell RJ, et al. (2005) Efficacy of thermotherapy to treat cutaneous leishmaniasis caused by Leishmania tropica in Kabul, Afghanistan: a randomized, controlled trial. Clin Infect Dis 40: 1148–1155.
    1. Tomaszewski D, Dandorph MJ, Manning J (1992) A Comparison of Skin Interface Temperature Response Between the ProHeat Instant Reusable Hot Pack and the Standard Hydrocollator Steam Pack. J Athl Train 27: 355–359.
    1. Boggild AK, Valencia BM, Espinosa D, Veland N, Ramos AP, et al. (2010) Detection and species identification of Leishmania DNA from filter paper lesion impressions for patients with American cutaneous leishmaniasis. Clin Infect Dis 50: e1–6.
    1. Tesler MD, Savedra MC, Holzemer WL, Wilkie DJ, Ward JA, et al. (1991) The word-graphic rating scale as a measure of children's and adolescents' pain intensity. Res Nurs Health 14: 361–371.
    1. Veland N, Boggild AK, Valencia C, Valencia BM, Llanos-Cuentas A, et al. (2012) Leishmania (Viannia) species identification on clinical samples from cutaneous leishmaniasis patients in Peru: assessment of a molecular stepwise approach. J Clin Microbiol 50: 495–498.
    1. Cannavo SP, Vaccaro M, Guarneri F (2000) Leishmaniasis recidiva cutis. Int J Dermatol 39: 205–206.
    1. Tuon FF, Amato VS, Graf ME, Siqueira AM, Nicodemo AC, et al. (2008) Treatment of New World cutaneous leishmaniasis–a systematic review with a meta-analysis. Int J Dermatol 47: 109–124.
    1. Safi N, Davis GD, Nadir M, Hamid H, Robert LL Jr, et al. (2012) Evaluation of thermotherapy for the treatment of cutaneous leishmaniasis in Kabul, Afghanistan: a randomized controlled trial. Mil Med 177: 345–351.
    1. Lopez L, Robayo M, Vargas M, Velez I (2012) Thermotherapy. An alternative for the treatment of American cutaneous leishmaniasis. Trials 13: 58.
    1. Arevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, et al. (2007) Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis 195: 1846–1851.
    1. Romero GA, Guerra MV, Paes MG, Macedo VO (2001) Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: therapeutic response to meglumine antimoniate. Am J Trop Med Hyg 65: 456–465.
    1. Miranda-Verastegui C, Tulliano G, Gyorkos TW, Calderon W, Rahme E, et al. (2009) First-line therapy for human cutaneous leishmaniasis in Peru using the TLR7 agonist imiquimod in combination with pentavalent antimony. PLoS Negl Trop Dis 3: e491.
    1. Unger A, O'Neal S, Machado PR, Guimaraes LH, Morgan DJ, et al. (2009) Association of treatment of American cutaneous leishmaniasis prior to ulcer development with high rate of failure in northeastern Brazil. Am J Trop Med Hyg 80: 574–579.

Source: PubMed

3
Abonnieren