Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans

M P Veldman, I Zijdewind, S Solnik, N A Maffiuletti, K M M Berghuis, M Javet, J Négyesi, T Hortobágyi, M P Veldman, I Zijdewind, S Solnik, N A Maffiuletti, K M M Berghuis, M Javet, J Négyesi, T Hortobágyi

Abstract

Purpose: Sensory input can modify voluntary motor function. We examined whether somatosensory electrical stimulation (SES) added to motor practice (MP) could augment motor learning, interlimb transfer, and whether physiological changes in neuronal excitability underlie these changes.

Methods: Participants (18-30 years, n = 31) received MP, SES, MP + SES, or a control intervention. Visuomotor practice included 300 trials for 25 min with the right-dominant wrist and SES consisted of weak electrical stimulation of the radial and median nerves above the elbow. Single- and double-pulse transcranial magnetic stimulation (TMS) metrics were measured in the intervention and non-intervention extensor carpi radialis.

Results: There was 27 % motor learning and 9 % (both p < 0.001) interlimb transfer in all groups but SES added to MP did not augment learning and transfer. Corticospinal excitability increased after MP and SES when measured at rest but it increased after MP and decreased after SES when measured during contraction. No changes occurred in intracortical inhibition and facilitation. MP did not affect the TMS metrics in the transfer hand. In contrast, corticospinal excitability strongly increased after SES with MP + SES showing sharply opposite of these effects.

Conclusion: Motor practice and SES each can produce motor learning and interlimb transfer and are likely to be mediated by different mechanisms. The results provide insight into the physiological mechanisms underlying the effects of MP and SES on motor learning and cortical plasticity and show that these mechanisms are likely to be different for the trained and stimulated motor cortex and the non-trained and non-stimulated motor cortex.

Keywords: Corticospinal excitability; Interlimb transfer; Motor evoked potential; Primary motor cortex; Transcranial magnetic stimulation.

Figures

Fig. 1
Fig. 1
Schematic overview of the experimental design. Baseline measurements including maximal compound action potentials (Mmax), corticospinal excitability (CSE), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), contralateral facilitation (CLF), and ipsilateral silent period (iSP) were performed before familiarization of the visuomotor task and after completion of one of the three interventions and motor tests
Fig. 2
Fig. 2
Increases in motor performance after motor practice (MP), somatosensory electrical stimulation (SES), and MP + SES in the intervention (open bars) and non-intervention (filled bars). Motor performance was computed as a reduction in template-matching errors. Performance improved more after MP and MP + SES in the right hand compared to SES. Asterisk, significant Time main effect (p < 0.05, open and filled bars, respectively, pooled, not graphed); dagger, significant Group by Time interaction (p < 0.05). Vertical bars denote +1SD
Fig. 3
Fig. 3
Raw data of changes in corticospinal excitability after motor practice (MP) and somatosensory electrical stimulation (SES). Representative 10-trial-averaged motor evoked potentials (MEPs) measured in the extensor carpi radialis (ECR) representing changes in corticospinal excitability before (gray lines) and after (black lines) the three interventions in the intervention left M1 (ac) and non-intervention right M1 (df)
Fig. 4
Fig. 4
Corticospinal excitability increases in all groups in the intervention M1 and after somatosensory electrical stimulation (SES) in the non-intervention M1. Corticospinal excitability before (open bars) and after (filled bars) the three interventions in the intervention left M1 (Panel A) and non-intervention right M1 (Panel B). Corticospinal excitability increased more after SES compared to MP and MP + SES in both M1s. Interconnected dots represent individual changes and vertical bars denote +1SD. Asterisk significant Time main effect (p < 0.05); dagger significant Group by Time interaction (p < 0.05)
Fig. 5
Fig. 5
Group and individual changes in short-interval intracortical inhibition (SICI) after motor practice (MP), somatosensory electrical stimulation (SES), and MP + SES in the non-intervention right M1. Conditioned motor evoked potentials (MEP) before (open bars) and after (filled bars) the three interventions. Lower values for SICI represent higher intracortical inhibition. Group data show that SICI increased after SES and decreased after MP + SES in the non-intervention M1 while MP did not modify SICI. Interconnected dots represent individual changes and vertical bars denote +1SD. Asterisk significant Time main effect (p < 0.05); dagger and section sign, significant Group by Time interaction (p < 0.05)
Fig. 6
Fig. 6
Group and individual changes in interhemispheric inhibition (IHI) and facilitation (CLF) after motor practice (MP) and somatosensory electrical stimulation (SES). IHI and CLF from the left M1 to the right M1 graphed before (open bars) and after (filled bars) the three interventions. IHI decreased after SES but increased after MP, resulting in a cancelation effect after MP + SES (Panel A). Opposite effects were found for CLF (Panel B). Interconnected dots represent individual changes and vertical bars denote +1SD. Asterisk significant Time main effect (p < 0.05); dagger and section sign significant Group by Time interaction (p < 0.05)

References

    1. Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD. Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol. 1989;62:711–722.
    1. Allison T, McCarthy G, Wood CC, Jones SJ. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain. 1991;114(6):2465–2503. doi: 10.1093/brain/114.6.2465.
    1. Baraduc P, Lang N, Rothwell JC, Wolpert DM. Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr Biol. 2004;14:252–256. doi: 10.1016/j.cub.2004.01.033.
    1. Beekhuizen KS, Field-Fote EC. Massed practice versus massed practice with stimulation: effects on upper extremity function and cortical plasticity in individuals with incomplete cervical spinal cord injury. Neurorehabil Neural Repair. 2005;19:33–45. doi: 10.1177/1545968305274517.
    1. Beekhuizen KS, Field-Fote EC. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia. Arch Phys Med Rehabil. 2008;89:602–608. doi: 10.1016/j.apmr.2007.11.021.
    1. Blickenstorfer A, Kleiser R, Keller T, et al. Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp. 2009;30:963–975. doi: 10.1002/hbm.20559.
    1. Brown RM, Palmer C. Auditory and motor imagery modulate learning in music performance. Front Hum Neurosci. 2013;7:320.
    1. Butefisch CM, Davis BC, Wise SP, et al. Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci USA. 2000;97:3661–3665. doi: 10.1073/pnas.97.7.3661.
    1. Camus M, Ragert P, Vandermeeren Y, Cohen LG. Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clin Neurophysiol. 2009;120:1859–1865. doi: 10.1016/j.clinph.2009.08.013.
    1. Carroll TJ, Lee M, Hsu M, Sayde J. Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. J Appl Physiol. 2008;104:1656–1664. doi: 10.1152/japplphysiol.01351.2007.
    1. Celnik P, Hummel F, Harris-Love M, Wolk R, Cohen LG. Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil. 2007;88:1369–1376. doi: 10.1016/j.apmr.2007.08.001.
    1. Charlton CS, Ridding MC, Thompson PD, Miles TS. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci. 2003;208:79–85. doi: 10.1016/S0022-510X(02)00443-4.
    1. Chipchase LS, Schabrun SM, Hodges PW. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study. Arch Phys Med Rehabil. 2011;92:1423–1430. doi: 10.1016/j.apmr.2011.01.011.
    1. Cirillo J, Todd G, Semmler JG. Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Eur J Neurosci. 2011;34:1847–1856. doi: 10.1111/j.1460-9568.2011.07870.x.
    1. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998;79:1117–1123.
    1. Conforto AB, Cohen LG, dos Santos RL, Scaff M, Marie SK. Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J Neurol. 2007;254:333–339. doi: 10.1007/s00415-006-0364-z.
    1. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72:443–454. doi: 10.1016/j.neuron.2011.10.008.
    1. Deuchert M, Ruben J, Schwiemann J, et al. Event-related fMRI of the somatosensory system using electrical finger stimulation. NeuroReport. 2002;13:365–369. doi: 10.1097/00001756-200203040-00023.
    1. Donoghue JP, Sanes JN. Motor areas of the cerebral cortex. J Clin Neurophysiol. 1994;11:382–396.
    1. Farkas T, Kis Z, Toldi J, Wolff J- Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by associational connections from the somatosensory cortex. Neuroscience. 1999;90:353–361. doi: 10.1016/S0306-4522(98)00451-5.
    1. Floyer-Lea A, Matthews PM. Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005;94:512–518. doi: 10.1152/jn.00717.2004.
    1. Forss N, Hari R, Salmelin R, et al. Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res. 1994;99:309–315. doi: 10.1007/BF00239597.
    1. Friedman DP, Jones EG. Thalamic input to areas 3a and 2 in monkeys. J Neurophysiol. 1981;45:59–85.
    1. Gallasch E, Christova M, Krenn M, Kossev A, Rafolt D. Changes in motor cortex excitability following training of a novel goal-directed motor task. Eur J Appl Physiol. 2009;105:47–54. doi: 10.1007/s00421-008-0871-y.
    1. Garry MI, Thomson RH. The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states. Exp Brain Res. 2009;193:267–274. doi: 10.1007/s00221-008-1620-5.
    1. Garry MI, Kamen G, Nordstrom MA. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. J Neurophysiol. 2004;91:1570–1578. doi: 10.1152/jn.00595.2003.
    1. Garvey MA, Ziemann U, Becker DA, Barker CA, Bartko JJ. New graphical method to measure silent periods evoked by transcranial magnetic stimulation. Clin Neurophysiol. 2001;112:1451–1460. doi: 10.1016/S1388-2457(01)00581-8.
    1. Gentilucci M, Toni I, Daprati E, Gangitano M. Tactile input of the hand and the control of reaching to grasp movements. Exp Brain Res. 1997;114:130–137. doi: 10.1007/PL00005612.
    1. Giovannelli F, Borgheresi A, Balestrieri F, et al. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol. 2009;587:5393–5410. doi: 10.1113/jphysiol.2009.175885.
    1. Golaszewski SM, Siedentopf CM, Koppelstaetter F, et al. Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology. 2004;62:2262–2269. doi: 10.1212/WNL.62.12.2262.
    1. Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci. 1998;1:64–68. doi: 10.1038/264.
    1. Hari R, Reinikainen K, Kaukoranta E, et al. Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol. 1984;57:254–263. doi: 10.1016/0013-4694(84)90126-3.
    1. Hari R, Hamalainen H, Hamalainen M, Kekoni J, Sams M, Tiihonen J. Separate finger representations at the human second somatosensory cortex. Neuroscience. 1990;37:245–249. doi: 10.1016/0306-4522(90)90210-U.
    1. Hess G, Donoghue JP. Long-term potentiation and long-term depression of horizontal connections in rat motor cortex. Acta Neurobiol Exp (Wars) 1996;56:397–405.
    1. Hiraoka K, Ae M, Ogura N, et al. Bimanual coordination of force enhances interhemispheric inhibition between the primary motor cortices. NeuroReport. 2014;25:1203–1207. doi: 10.1097/WNR.0000000000000248.
    1. Hortobagyi T, Richardson SP, Lomarev M, et al. Interhemispheric plasticity in humans. Med Sci Sports Exerc. 2011;43:1188–1199. doi: 10.1249/MSS.0b013e31820a94b8.
    1. Iftime-Nielsen SD, Christensen MS, Vingborg RJ, Sinkjaer T, Roepstorff A, Grey MJ. Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults. Hum Brain Mapp. 2012;33:40–49. doi: 10.1002/hbm.21191.
    1. Immink MA, Wright DL, Barnes WS. Temperature dependency in motor skill learning. J Mot Behav. 2012;44:105–113. doi: 10.1080/00222895.2012.654522.
    1. Jacobs M, Premji A, Nelson AJ. Plasticity-inducing TMS protocols to investigate somatosensory control of hand function. Neural Plast. 2012;2012:350574.
    1. Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol. 2005;99:1558–1568. doi: 10.1152/japplphysiol.01408.2004.
    1. Jones EG. The nature of the afferent pathways conveying short-latency inputs to primate motor cortex. Adv Neurol. 1983;39:263–285.
    1. Jones EG, Coulter JD, Hendry SH. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol. 1978;181:291–347. doi: 10.1002/cne.901810206.
    1. Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22:403–407. doi: 10.1016/j.cub.2012.01.024.
    1. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol (Lond) 2002;540:623–633. doi: 10.1113/jphysiol.2001.012801.
    1. Kaneko T, Caria MA, Asanuma H. Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J Comp Neurol. 1994;345:172–184. doi: 10.1002/cne.903450203.
    1. Koesler IB, Dafotakis M, Ameli M, Fink GR, Nowak DA. Electrical somatosensory stimulation improves movement kinematics of the affected hand following stroke. J Neurol Neurosurg Psychiatry. 2009;80:614–619. doi: 10.1136/jnnp.2008.161117.
    1. Kujirai T, Caramia MD, Rothwell JC, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–519. doi: 10.1113/jphysiol.1993.sp019912.
    1. Lee M, Hinder MR, Gandevia SC, Carroll TJ. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice. J Physiol. 2010;588:201–212. doi: 10.1113/jphysiol.2009.183855.
    1. Mang CS, Clair JM, Collins DF. Neuromuscular electrical stimulation has a global effect on corticospinal excitability for leg muscles and a focused effect for hand muscles. Exp Brain Res. 2011;209:355–363. doi: 10.1007/s00221-011-2556-8.
    1. Manto M, Oulad ben Taib N, Luft AR. Modulation of excitability as an early change leading to structural adaptation in the motor cortex. J Neurosci Res. 2006;83:177–180. doi: 10.1002/jnr.20733.
    1. McKay D, Brooker R, Giacomin P, Ridding M, Miles T. Time course of induction of increased human motor cortex excitability by nerve stimulation. NeuroReport. 2002;13:1271–1273. doi: 10.1097/00001756-200207190-00011.
    1. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M. Role of the human motor cortex in rapid motor learning. Exp Brain Res. 2001;136:431–438. doi: 10.1007/s002210000614.
    1. Muellbacher W, Ziemann U, Wissel J, et al. Early consolidation in human primary motor cortex. Nature. 2002;415:640–644. doi: 10.1038/nature712.
    1. Murase N, Cengiz B, Rothwell JC. Inter-individual variation in the after-effect of paired associative stimulation can be predicted from short-interval intracortical inhibition with the threshold tracking method. Brain Stimul. 2015;8:105–113. doi: 10.1016/j.brs.2014.09.010.
    1. Nielsen JB. Sensorimotor integration at spinal level as a basis for muscle coordination during voluntary movement in humans. J Appl Physiol. 2004;96:1961–1967. doi: 10.1152/japplphysiol.01073.2003.
    1. Nojima I, Mima T, Koganemaru S, Thabit MN, Fukuyama H, Kawamata T. Human motor plasticity induced by mirror visual feedback. J Neurosci. 2012;32:1293–1300. doi: 10.1523/JNEUROSCI.5364-11.2012.
    1. Nudo RJ, Friel KM, Delia SW. Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology. 2000;39:733–742. doi: 10.1016/S0028-3908(99)00254-3.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Panizza M, Nilsson J, Roth BJ, Basser PJ, Hallett M. Relevance of stimulus duration for activation of motor and sensory fibers: implications for the study of H-reflexes and magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1992;85:22–29. doi: 10.1016/0168-5597(92)90097-U.
    1. Perez MA, Lungholt BK, Nyborg K, Nielsen JB. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004;159:197–205. doi: 10.1007/s00221-004-1947-5.
    1. Perez MA, Wise SP, Willingham DT, Cohen LG. Neurophysiological mechanisms involved in transfer of procedural knowledge. J Neurosci. 2007;27:1045–1053. doi: 10.1523/JNEUROSCI.4128-06.2007.
    1. Perez MA, Butler JE, Taylor JL. Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles. J Neurophysiol. 2014;111:405–414. doi: 10.1152/jn.00322.2013.
    1. Poh E, Riek S, Carroll TJ. Ipsilateral corticospinal responses to ballistic training are similar for various intensities and timings of TMS. Acta Physiol (Oxf) 2013;207:385–396. doi: 10.1111/apha.12032.
    1. Ridding MC, Taylor JL. Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. J Physiol. 2001;537:623–631. doi: 10.1111/j.1469-7793.2001.00623.x.
    1. Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Experimental brain research. Experimentelle Hirnforschung. Exp Cereb. 2000;131:135–143.
    1. Ridding MC, McKay DR, Thompson PD, Miles TS. Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol. 2001;112:1461–1469. doi: 10.1016/S1388-2457(01)00592-2.
    1. Rosen I, Asanuma H. Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input–output relations. Exp Brain Res. 1972;14:257–273. doi: 10.1007/BF00816162.
    1. Rosenkranz K, Rothwell JC. Modulation of proprioceptive integration in the motor cortex shapes human motor learning. J Neurosci. 2012;32:9000–9006. doi: 10.1523/JNEUROSCI.0120-12.2012.
    1. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120:2008–2039. doi: 10.1016/j.clinph.2009.08.016.
    1. Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105(Pt 3):515–542. doi: 10.1093/brain/105.3.515.
    1. Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci. 2013;7:397. doi: 10.3389/fnhum.2013.00397.
    1. Sawaki L, Wu CW, Kaelin-Lang A, Cohen LG. Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke. 2006;37:246–247. doi: 10.1161/.
    1. Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One. 2012;7:e51298. doi: 10.1371/journal.pone.0051298.
    1. Schulte T, Muller-Oehring EM. Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychol Rev. 2010;20:174–190. doi: 10.1007/s11065-010-9130-1.
    1. Seidler RD, Bernard JA, Burutolu TB, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34:721–733. doi: 10.1016/j.neubiorev.2009.10.005.
    1. Shemmell J, Riek S, Tresilian JR, Carson RG. The role of the primary motor cortex during skill acquisition on a two-degrees-of-freedom movement task. J Mot Behav. 2007;39:29–39. doi: 10.3200/JMBR.39.1.29-39.
    1. Shin HW, Sohn YH. Interhemispheric transfer of paired associative stimulation-induced plasticity in the human motor cortex. NeuroReport. 2011;22:166–170. doi: 10.1097/WNR.0b013e3283439511.
    1. Smyth C, Summers JJ, Garry MI. Differences in motor learning success are associated with differences in M1 excitability. Hum Mov Sci. 2010;29:618–630. doi: 10.1016/j.humov.2010.02.006.
    1. Soekadar SR, Witkowski M, Birbaumer N, Cohen LG. Enhancing Hebbian learning to control brain oscillatory activity. Cereb Cortex. 2014;25(9):2409–2415. doi: 10.1093/cercor/bhu043.
    1. Solnik S, Rider P, Steinweg K, DeVita P, Hortobagyi T. Teager–Kaiser energy operator signal conditioning improves EMG onset detection. Eur J Appl Physiol. 2010;110:489–498. doi: 10.1007/s00421-010-1521-8.
    1. Sorinola IO, Bateman RW, Mamy K. Effect of somatosensory stimulation of two and three nerves on upper limb function in healthy individuals. Physiother Res Int. 2012;17:74–79. doi: 10.1002/pri.515.
    1. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572–584. doi: 10.1093/brain/123.3.572.
    1. Uehara K, Morishita T, Kubota S, Funase K. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction. Behav Brain Res. 2013;240:33–45. doi: 10.1016/j.bbr.2012.10.053.
    1. Veldman MP, Maffiuletti NA, Hallett M, Zijdewind I, Hortobagyi T. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev. 2014;47C:22–35. doi: 10.1016/j.neubiorev.2014.07.013.
    1. Wu CW, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LG. Enduring representational plasticity after somatosensory stimulation. Neuroimage. 2005;27:872–884. doi: 10.1016/j.neuroimage.2005.05.055.
    1. Wu CW, Seo H, Cohen LG. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil. 2006;87:351–357. doi: 10.1016/j.apmr.2005.11.019.
    1. Zhou S. Chronic neural adaptations to unilateral exercise: mechanisms of cross education. Exerc Sport Sci Rev. 2000;28:177–184.
    1. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol. 1996;40:367–378. doi: 10.1002/ana.410400306.
    1. Ziemann U, Muellbacher W, Hallett M, Cohen LG. Modulation of practice-dependent plasticity in human motor cortex. Brain. 2001;124:1171–1181. doi: 10.1093/brain/124.6.1171.

Source: PubMed

3
Abonnieren