Motor Skill Acquisition and Retention after Somatosensory Electrical Stimulation in Healthy Humans

Menno P Veldman, Inge Zijdewind, Nicola A Maffiuletti, Tibor Hortobágyi, Menno P Veldman, Inge Zijdewind, Nicola A Maffiuletti, Tibor Hortobágyi

Abstract

Somatosensory electrical stimulation (SES) can increase motor performance, presumably through a modulation of neuronal excitability. Because the effects of SES can outlast the period of stimulation, we examined the possibility that SES can also enhance the retention of motor performance, motor memory consolidation, after 24 h (Day 2) and 7 days (Day 7), that such effects would be scaled by SES duration, and that such effects were mediated by changes in aspects of corticospinal excitability, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Healthy young adults (n = 40) received either 20 (SES-20), 40 (SES-40), or 60 min (SES-60) of real SES, or sham SES (SES-0). The results showed SES-20 increased visuomotor performance on Day 2 (15%) and Day 7 (17%) and SES-60 increased visuomotor performance on Day 7 (11%; all p < 0.05) compared with SES-0. Specific responses to transcranial magnetic stimulation (TMS) increased immediately after SES (p < 0.05) but not on Days 2 and 7. In addition, changes in behavioral and neurophysiological parameters did not correlate, suggesting that paths and structures other than the ones TMS can assay must be (also) involved in the increases in visuomotor performance after SES. As examined in the present study, low-intensity peripheral electrical nerve stimulation did not have acute effects on healthy adults' visuomotor performance but SES had delayed effects in the form of enhanced motor memory consolidation that were not scaled by the duration of SES.

Keywords: motor evoked potential; motor learning; motor memory consolidation; primary motor cortex; transcranial magnetic stimulation.

Figures

Figure 1
Figure 1
Schematic overview of the experimental design. Baseline measures including maximal compound action potentials (Mmax), corticospinal excitability (CSE), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and input-output curves (IO curve) were performed before familiarization of the visuomotor task and after completion of one of four somatosensory electrical stimulation (SES) interventions. Baseline measures were repeated immediately post SES (IP), on day 2 (D2), and on day 7 (D7).
Figure 2
Figure 2
Increases in visuomotor performance after 0, 20, 40, or 60 min of somatosensory electrical stimulation (SES). Percent increases are corrected for improvements as a result of familiarization with the task immediately post (IP), on Day 2 (D2), and Day 7 (D7). Performance increased more in SES-20 compared to SES-0 on Day 2. On Day 7, performance increased more in SES-20 and SES-60 compared to SES-0. *Group by Time interaction with SES-0 (p < 0.05). Black dots represent individual changes. Vertical bars denote +1 SD.
Figure 3
Figure 3
(A) Input-output curves before (equation: y = −0.0005x3 − 0.0031x2 + 0.1649x − 0.1628) and after (equation: y = −0.0002x3 − 0.0081x2 + 0.1946 − 0.1888) somatosensory electrical stimulation (SES) and before (equation: y = 0.0006x3 − 0.0155x2 + 0.1806 − 0.1819) and after (equation: y = −0.0009x3 + 0.0048x2 + 0.1084 − 0.1216) a control intervention. Panel (B) Maximal evoked motor responses (EMRmax) increased after SES compared to SES-0 Immediately Post intervention (IP), but not on Day 2 (D2) and Day 7 (D7). *Group by Time interaction (p < 0.05). Vertical bars denote + 1 SD.
Figure 4
Figure 4
Spearman correlations between changes in maximal evoked motor response (EMRmax) and changes in motor performance immediately after SES (IP; n = 30; A), on day 2 (D2; n = 30; B), and on day 7 (D7; n = 30; C). No significant correlations were observed.
Figure 5
Figure 5
Spearman correlation between changes in short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) immediately post intervention (IP; n = 40). *Significant correlation at p < 0.05.

References

    1. Abbott L. F., Nelson S. B. (2000). Synaptic plasticity: taming the beast. Nat. Neurosci. 3(suppl.), 1178–1183. 10.1038/81453
    1. Andrews R. K., Schabrun S. M., Ridding M. C., Galea M. P., Hodges P. W., Chipchase L. S. (2013). The effect of electrical stimulation on corticospinal excitability is dependent on application duration: a same subject pre-post test design. J. Neuroeng. Rehabil. 10:51. 10.1186/1743-0003-10-51
    1. Applegate C., Burke D. (1989). Changes in excitability of human cutaneous afferents following prolonged high-frequency stimulation. Brain 112(Pt 1), 147–164. 10.1093/brain/112.1.147
    1. Baraduc P., Lang N., Rothwell J. C., Wolpert D. M. (2004). Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr. Biol. 14, 252–256. 10.1016/j.cub.2004.01.033
    1. Berghuis K. M., Veldman M. P., Solnik S., Koch G., Zijdewind I., Hortobágyi T. (2015). Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults. Age (Dordr) 37:9779. 10.1007/s11357-015-9779-8
    1. Bologna M., Rocchi L., Paparella G., Nardella A., Li Voti P., Conte A., et al. . (2015). Reversal of practice-related effects on corticospinal excitability has no immediate effect on behavioral outcome. Brain Stimul. 8, 603–612. 10.1016/j.brs.2015.01.405
    1. Borich M. R., Kimberley T. J. (2011). Both sleep and wakefulness support consolidation of continuous, goal-directed, visuomotor skill. Exp. Brain Res. 214, 619–630. 10.1007/s00221-011-2863-0
    1. Brown R. M., Robertson E. M., Press D. Z. (2009). Sequence skill acquisition and off-line learning in normal aging. PLoS ONE 4:e6683. 10.1371/journal.pone.0006683
    1. Bütefisch C. M., Davis B. C., Wise S. P., Sawaki L., Kopylev L., Classen J., et al. . (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 3661–3665. 10.1073/pnas.97.7.3661
    1. Buysse D. J., Reynolds C. F., III, Monk T. H., Berman S. R., Kupfer D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213. 10.1016/0165-1781(89)90047-4
    1. Cantarero G., Lloyd A., Celnik P. (2013). Reversal of long-term potentiation-like plasticity processes after motor learning disrupts skill retention. J. Neurosci. 33, 12862–12869. 10.1523/JNEUROSCI.1399-13.2013
    1. Cavada C., Goldman-Rakic P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445. 10.1002/cne.902870403
    1. Celnik P., Hummel F., Harris-Love M., Wolk R., Cohen L. G. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch. Phys. Med. Rehabil. 88, 1369–1376. 10.1016/j.apmr.2007.08.001
    1. Chipchase L. S., Schabrun S. M., Hodges P. W. (2011). Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin. Neurophysiol. 122, 456–463. 10.1016/j.clinph.2010.07.025
    1. Classen J., Steinfelder B., Liepert J., Stefan K., Celnik P., Cohen L. G., et al. . (2000). Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Exp. Brain Res. 130, 48–59. 10.1007/s002210050005
    1. Conforto A. B., Cohen L. G., dos Santos R. L., Scaff M., Marie S. K. (2007). Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J. Neurol. 254, 333–339. 10.1007/s00415-006-0364-z
    1. Conforto A. B., Kaelin-Lang A., Cohen L. G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann. Neurol. 51, 122–125. 10.1002/ana.10070
    1. Dayan E., Cohen L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron 72, 443–454. 10.1016/j.neuron.2011.10.008
    1. Devanne H., Lavoie B. A., Capaday C. (1997). Input-output properties and gain changes in the human corticospinal pathway. Exp. Brain Res. 114, 329–338. 10.1007/PL00005641
    1. Ferreri F., Vecchio F., Ponzo D., Pasqualetti P., Rossini P. M. (2014). Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG-TMS study. Hum. Brain Mapp. 35, 1969–1980. 10.1002/hbm.22306
    1. Floyer-Lea A., Wylezinska M., Kincses T., Matthews P. M. (2006). Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J. Neurophysiol. 95, 1639–1644. 10.1152/jn.00346.2005
    1. Forss N., Hari R., Salmelin R., Ahonen A., Hämäläinen M., Kajola M., et al. . (1994). Activation of the human posterior parietal cortex by median nerve stimulation. Exp. Brain Res. 99, 309–315.
    1. Garry M. I., Thomson R. H. (2009). The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states. Exp. Brain Res. 193, 267–274. 10.1007/s00221-008-1620-5
    1. Gentilucci M., Toni I., Daprati E., Gangitano M. (1997). Tactile input of the hand and the control of reaching to grasp movements. Exp. Brain Res. 114, 130–137. 10.1007/PL00005612
    1. Golaszewski S. M., Siedentopf C. M., Baldauf E., Koppelstaetter F., Eisner W., Unterrainer J., et al. . (2002). Functional magnetic resonance imaging of the human sensorimotor cortex using a novel vibrotactile stimulator. Neuroimage 17, 421–430. 10.1006/nimg.2002.1195
    1. Golaszewski S. M., Siedentopf C. M., Koppelstaetter F., Rhomberg P., Guendisch G. M., Schlager A., et al. . (2004). Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62, 2262–2269. 10.1212/WNL.62.12.2262
    1. Hess G., Donoghue J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J. Neurophysiol. 71, 2543–2547.
    1. Hess G., Donoghue J. P. (1996). Long-term potentiation and long-term depression of horizontal connections in rat motor cortex. Acta Neurobiol. Exp. (Wars). 56, 397–405.
    1. Hikosaka O., Nakamura K., Sakai K., Nakahara H. (2002). Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222. 10.1016/S0959-4388(02)00307-0
    1. Jones E. G. (1983). The nature of the afferent pathways conveying short-latency inputs to primate motor cortex. Adv. Neurol. 39, 263–285.
    1. Kaelin-Lang A. (2008). Enhancing rehabilitation of motor deficits with peripheral nerve stimulation. NeuroRehabilitation 23, 89–93.
    1. Kaelin-Lang A., Luft A. R., Sawaki L., Burstein A. H., Sohn Y. H., Cohen L. G. (2002). Modulation of human corticomotor excitability by somatosensory input. J. Physiol. (Lond) 540, 623–633. 10.1113/jphysiol.2001.012801
    1. Khaslavskaia S., Ladouceur M., Sinkjaer T. (2002). Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp. Brain Res. 145, 309–315. 10.1007/s00221-002-1094-9
    1. Kiernan M. C., Mogyoros I., Hales J. P., Gracies J. M., Burke D. (1997). Excitability changes in human cutaneous afferents induced by prolonged repetitive axonal activity. J. Physiol. 500(Pt 1), 255–264. 10.1113/jphysiol.1997.sp022015
    1. Knash M. E., Kido A., Gorassini M., Chan K. M., Stein R. B. (2003). Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Exp. Brain Res. 153, 366–377. 10.1007/s00221-003-1628-9
    1. Kobayashi M., Ng J., Théoret H., Pascual-Leone A. (2003). Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation. Exp. Brain Res. 149, 1–8. 10.1007/s00221-002-1329-9
    1. Koesler I. B., Dafotakis M., Ameli M., Fink G. R., Nowak D. A. (2008). Electrical somatosensory stimulation modulates hand motor function in healthy humans. J. Neurol. 255, 1567–1573. 10.1007/s00415-008-0990-8
    1. Koesler I. B., Dafotakis M., Ameli M., Fink G. R., Nowak D. A. (2009). Electrical somatosensory stimulation improves movement kinematics of the affected hand following stroke. J. Neurol. Neurosurg. Psychiatr. 80, 614–619. 10.1136/jnnp.2008.161117
    1. Kujirai T., Caramia M. D., Rothwell J. C., Day B. L., Thompson P. D., Ferbert A., et al. . (1993). Corticocortical inhibition in human motor cortex. J. Physiol. 471, 501–519. 10.1113/jphysiol.1993.sp019912
    1. Manita S., Suzuki T., Homma C., Matsumoto T., Odagawa M., Yamada K., et al. . (2015). A top-down cortical circuit for accurate sensory perception. Neuron 86, 1304–1316. 10.1016/j.neuron.2015.05.006
    1. Manto M., Oulad ben Taib N., Luft A. R. (2006). Modulation of excitability as an early change leading to structural adaptation in the motor cortex. J. Neurosci. Res. 83, 177–180. 10.1002/jnr.20733
    1. McKay D., Brooker R., Giacomin P., Ridding M., Miles T. (2002). Time course of induction of increased human motor cortex excitability by nerve stimulation. Neuroreport 13, 1271–1273. 10.1097/00001756-200207190-00011
    1. Mégevand P., Troncoso E., Quairiaux C., Muller D., Michel C. M., Kiss J. Z. (2009). Long-term plasticity in mouse sensorimotor circuits after rhythmic whisker stimulation. J. Neurosci. 29, 5326–5335. 10.1523/JNEUROSCI.5965-08.2009
    1. Muellbacher W., Ziemann U., Wissel J., Dang N., Kofler M., Facchini S., et al. . (2002). Early consolidation in human primary motor cortex. Nature 415, 640–644. 10.1038/nature712
    1. Nielsen J. B. (2004). Sensorimotor integration at spinal level as a basis for muscle coordination during voluntary movement in humans. J. Appl. Physiol. (1985). 96, 1961–1967. 10.1152/japplphysiol.01073.2003
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. 10.1016/0028-3932(71)90067-4
    1. Opie G. M., Ridding M. C., Semmler J. G. (2015). Age-related differences in pre- and post-synaptic motor cortex inhibition are task dependent. Brain Stimul. 8, 926–936. 10.1016/j.brs.2015.04.001
    1. Panizza M., Nilsson J., Roth B. J., Basser P. J., Hallett M. (1992). Relevance of stimulus duration for activation of motor and sensory fibers: implications for the study of H-reflexes and magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 85, 22–29. 10.1016/0168-5597(92)90097-U
    1. Park S. W., Dijkstra T. M., Sternad D. (2013). Learning to never forget-time scales and specificity of long-term memory of a motor skill. Front. Comput. Neurosci. 7:111. 10.3389/fncom.2013.00111
    1. Patel N., Jankovic J., Hallett M. (2014). Sensory aspects of movement disorders. Lancet Neurol. 13, 100–112. 10.1016/S1474-4422(13)70213-8
    1. Pavlides C., Miyashita E., Asanuma H. (1993). Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J. Neurophysiol. 70, 733–741.
    1. Perfetti B., Moisello C., Landsness E. C., Kvint S., Lanzafame S., Onofrj M., et al. . (2011). Modulation of gamma and theta spectral amplitude and phase synchronization is associated with the development of visuo-motor learning. J. Neurosci. 31, 14810–14819. 10.1523/JNEUROSCI.1319-11.2011
    1. Quene H., van den Bergh H. (2004). On multi-level modeling of data from repeated measures designs: a tutorial. Speech Commun. 43, 103–121. 10.1016/j.specom.2004.02.004
    1. Ridding M. C., McKay D. R., Thompson P. D., Miles T. S. (2001). Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin. Neurophysiol. 112, 1461–1469. 10.1016/S1388-2457(01)00592-2
    1. Robertson E. M., Pascual-Leone A., Miall R. C. (2004). Current concepts in procedural consolidation. Nat. Rev. Neurosci. 5, 576–582. 10.1038/nrn1426
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A., Safety of TMS Consensus Group (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039. 10.1016/j.clinph.2009.08.016
    1. Sale M. V., Ridding M. C., Nordstrom M. A. (2007). Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp. Brain Res. 181, 615–626. 10.1007/s00221-007-0960-x
    1. Sawaki L., Wu C. W., Kaelin-Lang A., Cohen L. G. (2006). Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke 37, 246–247. 10.1161/
    1. Schabrun S. M., Ridding M. C., Galea M. P., Hodges P. W., Chipchase L. S. (2012). Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS ONE 7:e51298. 10.1371/journal.pone.0051298
    1. Schubotz R. I., von Cramon D. Y. (2003). Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage 20(suppl. 1), S120–S131. 10.1016/j.neuroimage.2003.09.014
    1. Seidler R. D. (2010). Neural correlates of motor learning, transfer of learning, and learning to learn. Exerc. Sport Sci. Rev. 38, 3–9. 10.1097/JES.0b013e3181c5cce7
    1. Seidler R. D., Noll D. C. (2008). Neuroanatomical correlates of motor acquisition and motor transfer. J. Neurophysiol. 99, 1836–1845. 10.1152/jn.01187.2007
    1. Shadmehr R., Holcomb H. H. (1997). Neural correlates of motor memory consolidation. Science 277, 821–825. 10.1126/science.277.5327.821
    1. Sorinola I. O., Bateman R. W., Mamy K. (2012). Effect of somatosensory stimulation of two and three nerves on upper limb function in healthy individuals. Physiother. Res. Int. 17, 74–79. 10.1002/pri.515
    1. Tombaugh T. N., McIntyre N. J. (1992). The mini-mental state examination: a comprehensive review. J. Am. Geriatr. Soc. 40, 922–935. 10.1111/j.1532-5415.1992.tb01992.x
    1. Veldman M. P., Maffiuletti N. A., Hallett M., Zijdewind I., Hortobágyi T. (2014). Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci. Biobehav. Rev. 47, 22–35. 10.1016/j.neubiorev.2014.07.013
    1. Veldman M. P., Zijdewind I., Solnik S., Maffiuletti N. A., Berghuis K. M., Javet M., et al. . (2015). Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans. Eur. J. Appl. Physiol. 115, 2505–2519. 10.1007/s00421-015-3248-z
    1. Wu C. W., Seo H. J., Cohen L. G. (2006). Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch. Phys. Med. Rehabil. 87, 351–357. 10.1016/j.apmr.2005.11.019
    1. Wu C. W., van Gelderen P., Hanakawa T., Yaseen Z., Cohen L. G. (2005). Enduring representational plasticity after somatosensory stimulation. Neuroimage 27, 872–884. 10.1016/j.neuroimage.2005.05.055
    1. Wu J., Srinivasan R., Kaur A., Cramer S. C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. Neuroimage 91, 84–90. 10.1016/j.neuroimage.2014.01.026
    1. Zimerman M., Nitsch M., Giraux P., Gerloff C., Cohen L. G., Hummel F. C. (2013). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73, 10–15. 10.1002/ana.23761

Source: PubMed

3
Abonnieren