A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma

Wan-Hong Zhao, Jie Liu, Bai-Yan Wang, Yin-Xia Chen, Xing-Mei Cao, Yun Yang, Yi-Lin Zhang, Fang-Xia Wang, Peng-Yu Zhang, Bo Lei, Liu-Fang Gu, Jian-Li Wang, Nan Yang, Ru Zhang, Hui Zhang, Ying Shen, Ju Bai, Yan Xu, Xu-Geng Wang, Rui-Li Zhang, Li-Li Wei, Zong-Fang Li, Zhen-Zhen Li, Yan Geng, Qian He, Qiu-Chuan Zhuang, Xiao-Hu Fan, Ai-Li He, Wang-Gang Zhang, Wan-Hong Zhao, Jie Liu, Bai-Yan Wang, Yin-Xia Chen, Xing-Mei Cao, Yun Yang, Yi-Lin Zhang, Fang-Xia Wang, Peng-Yu Zhang, Bo Lei, Liu-Fang Gu, Jian-Li Wang, Nan Yang, Ru Zhang, Hui Zhang, Ying Shen, Ju Bai, Yan Xu, Xu-Geng Wang, Rui-Li Zhang, Li-Li Wei, Zong-Fang Li, Zhen-Zhen Li, Yan Geng, Qian He, Qiu-Chuan Zhuang, Xiao-Hu Fan, Ai-Li He, Wang-Gang Zhang

Abstract

Background: Chimeric antigen receptor (CAR) T cell therapy has demonstrated proven efficacy in some hematologic cancers. We evaluated the safety and efficacy of LCAR-B38M, a dual epitope-binding CAR T cell therapy directed against 2 distinct B cell maturation antigen epitopes, in patients with relapsed/refractory (R/R) multiple myeloma (MM).

Methods: This ongoing phase 1, single-arm, open-label, multicenter study enrolled patients (18 to 80 years) with R/R MM. Lymphodepletion was performed using cyclophosphamide 300 mg/m2. LCAR-B38M CAR T cells (median CAR+ T cells, 0.5 × 106 cells/kg [range, 0.07 to 2.1 × 106]) were infused in 3 separate infusions. The primary objective is to evaluate the safety of LCAR-B38M CAR T cells; the secondary objective is to evaluate the antimyeloma response of the treatment based on the general guidelines of the International Myeloma Working Group.

Results: At data cutoff, 57 patients had received LCAR-B38M CAR T cells. All patients experienced ≥ 1 adverse events (AEs). Grade ≥ 3 AEs were reported in 37/57 patients (65%); most common were leukopenia (17/57; 30%), thrombocytopenia (13/57; 23%), and aspartate aminotransferase increased (12/57; 21%). Cytokine release syndrome occurred in 51/57 patients (90%); 4/57 (7%) had grade ≥ 3 cases. One patient reported neurotoxicity of grade 1 aphasia, agitation, and seizure-like activity. The overall response rate was 88% (95% confidence interval [CI], 76 to 95); 39/57 patients (68%) achieved a complete response, 3/57 (5%) achieved a very good partial response, and 8/57 (14%) achieved a partial response. Minimal residual disease was negative for 36/57 (63%) patients. The median time to response was 1 month (range, 0.4 to 3.5). At a median follow-up of 8 months, median progression-free survival was 15 months (95% CI, 11 to not estimable). Median overall survival for all patients was not reached.

Conclusions: LCAR-B38M CAR T cell therapy displayed a manageable safety profile and demonstrated deep and durable responses in patients with R/R MM.

Trial registration: ClinicalTrials.gov , NCT03090659 ; Registered on March 27, 2017, retrospectively registered.

Keywords: BCMA; CAR T; Chimeric antigen receptor; Multiple myeloma; Refractory; Relapsed.

Conflict of interest statement

Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki and was approved by the institutional independent ethics committee (reference number: 2016002) of The Second Affiliated Hospital of Xi’an Jiaotong University. All patients provided written informed consent.

Consent for publication

Consent from patients whose data are included in this article has been obtained in writing.

Competing interests

Q-CZ and X-HF are employees of Nanjing Legend Biotech Co. All other authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Efficacy assessments of LCAR-B38M. a Individual patient response and duration of follow-up for patients who achieved at least a PR (n = 50). b One patient manifested extramedullary myeloma and wide subcutaneous metastasis. Examination on day 1, day 19, and day 84 after LCAR-B38M CAR T cell infusion showed regression of the subcutaneous metastases. c CT scans of a patient with an extramedullary lesion beside the thoracic vertebrae and severe pleural effusion at baseline and at week 3 and week 8 following LCAR-B38M CAR T cell infusion. It should be noted that the patient received thoracentesis intermittently before the CAR T treatment but did not receive thoracentesis or intrathoracic injection of drugs after treatment
Fig. 2
Fig. 2
Progression-free survival and overall survival. a The Kaplan-Meier curve for progression-free survival for all treated patients. The median progression-free survival was 15 months (95% CI, 11 to not estimable). b The Kaplan-Meier curve for overall survival for all treated patients. The median overall survival was not reached. The dotted lines represent 95% confidence intervals

References

    1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–1060. doi: 10.1056/NEJMra1011442.
    1. Harousseau JL, Attal M, Avet-Loiseau H, et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol. 2010;28(30):4621–4629. doi: 10.1200/JCO.2009.27.9158.
    1. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–157. doi: 10.1038/leu.2011.196.
    1. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–1219. doi: 10.1056/NEJMoa1506348.
    1. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–631. doi: 10.1056/NEJMoa1505654.
    1. Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551–1560. doi: 10.1016/S0140-6736(15)01120-4.
    1. Palumbo A, Dimopoulos M, San Miguel J, et al. Lenalidomide in combination with dexamethasone for the treatment of relapsed or refractory multiple myeloma. Blood Rev. 2009;23(2):87–93. doi: 10.1016/j.blre.2008.07.003.
    1. Rajkumar SV, Rosinol L, Hussein M, et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol. 2008;26(13):2171–2177. doi: 10.1200/JCO.2007.14.1853.
    1. Richardson PG, Weller E, Lonial S, et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood. 2010;116(5):679–686. doi: 10.1182/blood-2010-02-268862.
    1. San Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359(9):906–917. doi: 10.1056/NEJMoa0801479.
    1. Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19(8):2048–2060. doi: 10.1158/1078-0432.CCR-12-2422.
    1. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103(2):689–694. doi: 10.1182/blood-2003-06-2043.
    1. Sanchez E, Li M, Kitto A, et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol. 2012;158(6):727–738. doi: 10.1111/j.1365-2141.2012.09241.x.
    1. Seckinger A, Delgado JA, Moser S, et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 2017;31(3):396–410. doi: 10.1016/j.ccell.2017.02.002.
    1. KYMRIAH (tisagenlecleucel) prescribing information. East Hanover: Novartis Pharmaceuticals Corporation, 2018. (Accessed 4 Nov 2018).
    1. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–1517. doi: 10.1056/NEJMoa1407222.
    1. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: 10.1056/NEJMoa1709866.
    1. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–2544. doi: 10.1056/NEJMoa1707447.
    1. YESCARTA (axicabtagene ciloleucel) prescribing information. Santa Monica, CA: Kite Pharma Inc, 2017. (Accessed 4 Nov 2018).
    1. Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36(22):2267–2280. doi: 10.1200/JCO.2018.77.8084.
    1. Raje N, Berdeja J, Lin Y, et al. bb2121 anti-BCMA CAR T-cell therapy in patients with relapsed/refractory multiple myeloma: updated results from a multicenter phase I study. J Clin Oncol. 2018;36:8007. doi: 10.1200/JCO.2018.36.15_suppl.8007.
    1. Fan F, Zhao W, Liu J, et al. Durable remissions with BCMA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J Clin Oncol. 2017;35(18):LBA3001–LBA3LBA. doi: 10.1200/JCO.2017.35.15_suppl.LBA3001.
    1. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–e548. doi: 10.1016/S1470-2045(14)70442-5.
    1. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN guidelines) for multiple myeloma version 2.2016. National Comprehensive Cancer Network, 2016. (Accessed 10 Apr 2016).
    1. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–195. doi: 10.1182/blood-2014-05-552729.
    1. Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–1473. doi: 10.1038/sj.leu.2404284.
    1. Rajkumar SV, Harousseau JL, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691–4695. doi: 10.1182/blood-2010-10-299487.
    1. Nucci M, Anaissie E. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin Infect Dis. 2009;49(8):1211–1225. doi: 10.1086/605664.
    1. Kim K, Lee JH, Kim JS, et al. Clinical profiles of multiple myeloma in Asia-an Asian myeloma network study. Am J Hematol. 2014;89(7):751–756. doi: 10.1002/ajh.23731.
    1. Lu J, Lu J, Chen W, et al. Clinical features and treatment outcome in newly diagnosed Chinese patients with multiple myeloma: results of a multicenter analysis. Blood Cancer J. 2014;4:e239. doi: 10.1038/bcj.2014.55.
    1. Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128(13):1688–1700. doi: 10.1182/blood-2016-04-711903.

Source: PubMed

3
Abonnieren