Loss of Metabolic Flexibility in the Failing Heart

Qutuba G Karwi, Golam M Uddin, Kim L Ho, Gary D Lopaschuk, Qutuba G Karwi, Golam M Uddin, Kim L Ho, Gary D Lopaschuk

Abstract

To maintain its high energy demand the heart is equipped with a highly complex and efficient enzymatic machinery that orchestrates ATP production using multiple energy substrates, namely fatty acids, carbohydrates (glucose and lactate), ketones and amino acids. The contribution of these individual substrates to ATP production can dramatically change, depending on such variables as substrate availability, hormonal status and energy demand. This "metabolic flexibility" is a remarkable virtue of the heart, which allows utilization of different energy substrates at different rates to maintain contractile function. In heart failure, cardiac function is reduced, which is accompanied by discernible energy metabolism perturbations and impaired metabolic flexibility. While it is generally agreed that overall mitochondrial ATP production is impaired in the failing heart, there is less consensus as to what actual switches in energy substrate preference occur. The failing heart shift toward a greater reliance on glycolysis and ketone body oxidation as a source of energy, with a decrease in the contribution of glucose oxidation to mitochondrial oxidative metabolism. The heart also becomes insulin resistant. However, there is less consensus as to what happens to fatty acid oxidation in heart failure. While it is generally believed that fatty acid oxidation decreases, a number of clinical and experimental studies suggest that fatty acid oxidation is either not changed or is increased in heart failure. Of importance, is that any metabolic shift that does occur has the potential to aggravate cardiac dysfunction and the progression of the heart failure. An increasing body of evidence shows that increasing cardiac ATP production and/or modulating cardiac energy substrate preference positively correlates with heart function and can lead to better outcomes. This includes increasing glucose and ketone oxidation and decreasing fatty acid oxidation. In this review we present the physiology of the energy metabolism pathways in the heart and the changes that occur in these pathways in heart failure. We also look at the interventions which are aimed at manipulating the myocardial metabolic pathways toward more efficient substrate utilization which will eventually improve cardiac performance.

Keywords: cardiac metabolism; fatty acid oxidation; glucose oxidation; heart failure; insulin resistant; ketone oxidation.

Figures

Figure 1
Figure 1
Energy metabolism in normal heart. Various metabolic pathways contribute to mitochondrial ATP production in the heart. Mitochondrial ATP production uses mostly fatty acids, glucose and ketones as a fuel source. The production of acetyl CoA by fatty acid ß-oxidation first requires the mitochondrial uptake of fatty acids via a carnitine carrier system. Oxidation of glucose involves the production of pyruvate via glycolysis, which produces acetyl CoA for the TCA cycle via PDH. Acetyl CoA production by ketone body oxidation is facilitated by BDH and SCOT. MPC, mitochondrial pyruvate career; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; TCA, tricarboxylic acid cycle; SCOT, succinyl-CoA-3-oxaloacid CoA transferase; BDH, β-hydroxybutyrate dehydrogenase; CPT, Carnitine palmitoyltransferase; MCD, malonyl CoA dehydrogenase; ACC, acetyl CoA carboxylase; MCT, monocarboxylate transporter; CD36, cluster of differentiation; FAT, fatty acid translocase; GLUT, glucose transporter type (1 or 4).
Figure 2
Figure 2
Energy metabolism in heart failure. During heart failure, overall mitochondrial oxidative metabolism and electron transport chain activity is compromised. Increased flux is indicated by black lines, while red lines indicate impaired utilization of different substrates. MPC, mitochondrial pyruvate career; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; TCA, tricarboxylic acid cycle; SCOT, succinyl-CoA-3-oxaloacid CoA transferase; BDH, β-hydroxybutyrate dehydrogenase; CPT, carnitine palmitoyltransferase; MCD, malonyl CoA dehydrogenase; ACC, acetyl CoA carboxylase; MCT, monocarboxylate transporter; CD36, cluster of differentiation; FAT, fatty acid translocase; GLUT, glucose transporter type (1 or 4).
Figure 3
Figure 3
Future approaches to overcome the metabolic balance or inflexibility: In the healthy heart, a variety of energy substrates produce ATP to maintain metabolic flexibility and cardiac efficiency. However, in heart failure a reduced ATP production occurs due to a decreased metabolic inflexibility and a less efficient heart. Transcriptional changes and altered mitochondrial biogenesis also contribute to this metabolic inflexibility in heart failure. Possible approaches to improve metabolic flexibility are shown by stars. DCA, dichloroacetate; SSO, sulfo-N-succinimidyl-oleate; MCD, malonyl CoA dehydrogenase; AA, amino acids.

References

    1. Savarese G, Lund LH. Global public health burden of heart failure. Cardiac Fail Rev. (2017) 3:7–11. 10.15420/cfr.2016:25:2
    1. Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP, et al. . Trends in heart failure incidence and survival in a community-based population. JAMA (2004) 292:344–50. 10.1001/jama.292.3.344
    1. Wang G, Zhang Z, Ayala C, Wall HK, Fang J. Costs of heart failure-related hospitalizations in patients aged 18 to 64 years. Am J Manag Care (2010) 16:769–76.
    1. Benjamin EJ, Virani SS, Callaway CW, Chang AR, Cheng S, Chiuve SE, et al. . Heart disease and stroke statistics - 2017 update: a report from the american heart association. Circulation (2017) 135:e146–603. 10.1161/CIR.0000000000000485
    1. Collins-Nakai RL, Noseworthy D, Lopaschuk GD. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol Heart Circ Physiol. (1994) 267:H1862–71. 10.1152/ajpheart.1994.267.5.H1862
    1. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem. (1998) 273:29530–9. 10.1074/jbc.273.45.29530
    1. Hearse DJ. Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol. (1979) 44:1115–21. 10.1016/0002-9149(79)90177-2
    1. Krahe T, Schindler R, Neubauer S, Ertl G, Horn M, Lackner K. 31P-Kardio-MR-Spektroskopie bei Myokardinsuffizienz. Fortschr Röntgenstr. (1993) 159:64–70. 10.1055/s-2008-1032723
    1. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, et al. . Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation (1997) 96:2190–6. 10.1161/01.CIR.96.7.2190
    1. Neubauer S. The failing heart — an engine out of fuel. N Engl J Med. (2007) 356:1140–51. 10.1056/NEJMra063052
    1. De Jong KA, Lopaschuk GD. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can J Cardiol. (2017) 33:860–71. 10.1016/j.cjca.2017.03.009
    1. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. (2010) 90:207–58. 10.1152/physrev.00015.2009
    1. Zhabyeyev P, Gandhi M, Mori J, Basu R, Kassiri Z, Clanachan A, et al. . Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res. (2013) 97:676–85. 10.1093/cvr/cvs424
    1. Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, et al. . Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circulation (2013) 6:1039–48. 10.1161/CIRCHEARTFAILURE.112.000228
    1. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. . The failing heart relies on ketone bodies as a fuel. Circulation (2016) 133:698–705. 10.1161/CIRCULATIONAHA.115.017355
    1. Bedi KC, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, et al. . Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation (2016) 133:706–16. 10.1161/CIRCULATIONAHA.115.017545
    1. Ho K, Wagg C, Zhang L, Ussher J, Lopaschuk G. The contribution of fatty acid and ketone body oxidation to energy production increases in the failing heart and is associated with a decrease in cardiac efficiency. J Mol Cell Cardiol. (2017) 112:143 10.1016/j.yjmcc.2017.07.041
    1. Allard M, Schonekess B, Henning S, English D, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol Heart Circ Physiol. (1994) 267:H742–50. 10.1152/ajpheart.1994.267.2.H742
    1. Casademont J, Miró Ò. Electron transport chain defects in heart failure. Heart Fail Rev. (2002) 7:131–9. 10.1023/A:1015372407647
    1. Bugger H, Schwarzer M, Chen D, Schrepper A, Amorim PA, Schoepe M, et al. . Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res. (2009) 85:376–84. 10.1093/cvr/cvp344
    1. Riehle C, Wende AR, Zaha VG, Pires KM, Wayment B, Olsen C, et al. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res. (2011) 111:243964 10.1161/CIRCRESAHA.111.243964
    1. Cahill GF, Jr, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol Assoc. (2003) 114:143–9.
    1. Taegtmeyer H. Failing heart and starving brain. Circulation (2016) 134:265–6. 10.1161/CIRCULATIONAHA.116.022141
    1. Wambolt RB, Lopaschuk GD, Brownsey RW, Allard MF. Dichloroacetate improves postischemic function of hypertrophied rat hearts. J Am Coll Cardiol. (2000) 36:1378–85. 10.1016/S0735-1097(00)00856-1
    1. Dyck JRB, Hopkins TA, Bonnet S, Michelakis ED, Young ME, Watanabe M, et al. . Absence of malonyl coenzyme a decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation (2006) 114:1721–8. 10.1161/CIRCULATIONAHA.106.642009
    1. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. (2005) 85:1093–129. 10.1152/physrev.00006.2004
    1. Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation—a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta Mol Cell Res. (2011) 1813:1333–50. 10.1016/j.bbamcr.2011.01.015
    1. Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res. (2011) 90:220–3. 10.1093/cvr/cvr070
    1. Sun H, Wang Y. Branched chain amino acid metabolic reprogramming in heart failure. Biochim Biophys Acta Mol Basis Dis. (2016) 1862:2270–5. 10.1016/j.bbadis.2016.09.009
    1. Locke FS, Rosenheim O. Contributions to the physiology of the isolated heart. J Physiol. (1907) 36:205–20. 10.1113/jphysiol.1907.sp001229
    1. Kornberg H. Krebs and his trinity of cycles. Nat Rev Mol Cell Biol. (2000) 1:225–8. 10.1038/35043073
    1. Lehninger AL, Nelson DL, Cox MM. Lehninger Principles of Biochemistry. New York, NY: Worth Publishers; (2000).
    1. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, et al. . Identification and functional expression of the mitochondrial pyruvate carrier. Science (2012) 337:93–6. 10.1126/science.1218530
    1. Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. (2003) 31:1143–51. 10.1042/bst0311143
    1. Knoop F. Der Abbau Aromatischer Fettsäuren im Tierkörper. Freiburg im Breisgau: Kuttruff; (1904).
    1. Dakin HD. The mode of oxidation in the animal organism of phenyl derivatives of fatty acids. Part V: studies on the fate of phenylvaleric acid and its derivatives. J Biol Chem. (1909) 6:221–33.
    1. Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med. (1954) 16:504–15. 10.1016/0002-9343(54)90365-4
    1. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (1963) 281:785–9. 10.1016/S0140-6736(63)91500-9
    1. Van Der Vusse GJ, Van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. (2000) 45:279–93. 10.1016/S0008-6363(99)00263-1
    1. Augustus AS, Kako Y, Yagyu H, Goldberg IJ. Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab. (2003) 284:E331–9. 10.1152/ajpendo.00298.2002
    1. Niu YG, Hauton D, Evans RD. Utilization of triacylglycerol-rich lipoproteins by the working rat heart: routes of uptake and metabolic fates. J Physiol. (2004) 558:225–37. 10.1113/jphysiol.2004.061473
    1. Saddik M, Gamble J, Witters L, Lopaschuk G. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. (1993) 268:25836–45.
    1. Glatz JF, Luiken JJ, Bonen A. Involvement of membrane-associated proteins in the acute regulation of cellular fatty acid uptake. J Mol Neurosci. (2001) 16:123–32. 10.1385/JMN:16:2-3:123
    1. Schwenk RW, Luiken JJ, Bonen A, Glatz JF. Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease. Cardiovasc Res. (2008) 79:249–58. 10.1093/cvr/cvn116
    1. Chiu H-C, Kovacs A, Ford DA, Hsu F-F, Garcia R, Herrero P, et al. . A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. (2001) 107:813–22. 10.1172/JCI10947
    1. Murthy M, Pande S. Mechanism of carnitine acylcarnitine translocase-catalyzed import of acylcarnitines into mitochondria. J Biol Chem. (1984) 259:9082–9.
    1. Mcgarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system—from concept to molecular analysis. FEBS J. (1997) 244:1–14. 10.1111/j.1432-1033.1997.00001.x
    1. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. (2013) 113:709–24. 10.1161/CIRCRESAHA.113.300376
    1. Mcgarry JD, Mannaerts G, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. (1977) 60:265–70. 10.1172/JCI108764
    1. Mcgarry JD, Leatherman GF, Foster DW. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem. (1978) 253:4128–36.
    1. Mcgarry J, Foster D. Regulation of hepatic fatty acid oxidation and ketone body production. Ann Rev Biochem. (1980) 49:395–420. 10.1146/annurev.bi.49.070180.002143
    1. Savage DB, Choi CS, Samuel VT, Liu Z-X, Zhang D, Wang A, et al. . Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. (2006) 116:817–24. 10.1172/JCI27300
    1. Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. (2009) 50:S138–43. 10.1194/jlr.R800079-JLR200
    1. Rui L. Energy metabolism in the liver. Comp Physiol. (2014) 4:177–97. 10.1002/cphy.c130024
    1. Dyck JR, Lopaschuk GD. Malonyl CoA control of fatty acid oxidation in the ischemic heart. J Mol Cell Cardiol. (2002) 34:1099–109. 10.1006/jmcc.2002.2060
    1. Ussher JR, Lopaschuk GD. The malonyl CoA axis as a potential target for treating ischaemic heart disease. Cardiovasc Res. (2008) 79:259–68. 10.1093/cvr/cvn130
    1. Reszko AE, Kasumov T, David F, Thomas KR, Jobbins KA, Cheng J-F, et al. . Regulation of malonyl-CoA concentration and turnover in the normal heart. J Biol Chem. (2004) 279:34298–301. 10.1074/jbc.M405488200
    1. Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Phys Heart Circ Physiol. (2013) 304:H1060–76. 10.1152/ajpheart.00646.2012
    1. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. (2017) 25:262–84. 10.1016/j.cmet.2016.12.022
    1. Williamson DH, Hems R. Metabolism and function of ketone bodies. Essays Cell Metab. (1970) 257–81.
    1. Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostagl Leukot Essent Fatty Acids (2004) 70:243–51. 10.1016/j.plefa.2003.11.001
    1. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. . SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. (2013) 18:920–33. 10.1016/j.cmet.2013.11.013
    1. Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol. (2001) 281:H2289–94. 10.1152/ajpheart.2001.281.6.H2289
    1. Wang Y, Peng F, Tong W, Sun H, Xu N, Liu S. The nitrated proteome in heart mitochondria of the db/db mouse model: characterization of nitrated tyrosine residues in SCOT. J Prot Res. (2010) 9:4254–63. 10.1021/pr100349g
    1. Rebrin I, Brégère C, Kamzalov S, Gallaher TK, Sohal RS. Nitration of tryptophan 372 in succinyl-CoA:3-ketoacid CoA transferase during aging in rat heart mitochondria. Biochemistry (2007) 46:10130–44. 10.1021/bi7001482
    1. Bing RJ. The metabolism of the heart. Harvey Lect. (1954) 50:27–70.
    1. Barnes RH, Mackay EM, Moe GK, Visscher MB. The utilization of ß hydroxybutyric acid by the isolated mammalian heart and lungs. Am J Physiol Legacy Cont. (1938) 123:272–9. 10.1152/ajplegacy.1938.123.1.272
    1. Waters ET, Fletcher JP, Mirsky IA. The relation between carbohydrate and ß-hydroxybutyric acid utilization by the heart-lung preparation. Am J Physiol Legacy Cont. (1938) 122:542–6. 10.1152/ajplegacy.1938.122.2.542
    1. Rudolph W, Maas D, Richter J, Hasinger F, Hofmann H, Dohrn P. [On the significance of acetoacetate and beta-hydroxybutyrate in human myocardial metabolism]. Klin Wochenschr. (1965) 43:445–51. 10.1007/BF01483852
    1. Chandler MP, Kerner J, Huang H, Vazquez E, Reszko A, Martini WZ, et al. Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol. (2004) 287:H1538–43. 10.1152/ajpheart.00281.2004
    1. O'donnell JM, Fields AD, Sorokina N, Lewandowski ED. The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol. (2008) 44:315–22. 10.1016/j.yjmcc.2007.11.006
    1. Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim Biophys Acta Mol Cell Res. (2013) 1833:840–7. 10.1016/j.bbamcr.2012.08.015
    1. Dávila-Román VG, Vedala G, Herrero P, De Las Fuentes L, Rogers JG, Kelly DP, et al. . Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. (2002) 40:271–7. 10.1016/S0735-1097(02)01967-8
    1. Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci USA. (2005) 102:808–13. 10.1073/pnas.0408962102
    1. Neglia D, De Caterina A, Marraccini P, Natali A, Ciardetti M, Vecoli C, et al. . Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. (2007) 293:H3270–8. 10.1152/ajpheart.00887.2007
    1. Fukushima A, Milner K, Gupta A, Lopaschuk GD. Myocardial energy substrate metabolism in heart failure: from pathways to therapeutic targets. Curr Pharmac Design (2015) 21:3654–64. 10.2174/1381612821666150710150445
    1. Jameel MN, Hu Q, Zhang J. Myocytes oxygenation and high energy phosphate levels during hypoxia. PLoS ONE (2014) 9:e101317. 10.1371/journal.pone.0101317
    1. Dass S, Holloway CJ, Cochlin LE, Rider OJ, Mahmod M, Robson M, et al. . No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail. (2015) 8:1088–93. 10.1161/CIRCHEARTFAILURE.114.002169
    1. Degens H, De Brouwer KF, Gilde AJ, Lindhout M, Willemsen PH, Janssen BJ, et al. . Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol. (2006) 101:17–26. 10.1007/s00395-005-0549-0
    1. Akki A, Smith K, Seymour A-ML. Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol. Cell. Biochem. (2008) 311:215–24. 10.1007/s11010-008-9711-y
    1. Symons JD, Abel ED. Lipotoxicity contributes to endothelial dysfunction: a focus on the contribution from ceramide. Rev Endocr Metab Dis. (2013) 14:59–68. 10.1007/s11154-012-9235-3
    1. Diakos NA, Navankasattusas S, Abel ED, Rutter J, Mccreath L, Ferrin P, et al. . Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl Sci. (2016) 1:432–44. 10.1016/j.jacbts.2016.06.009
    1. Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med. (2018) 24:3 10.1186/s10020-018-0005-x
    1. Fiolet JW, Baartscheer A. Cellular calcium homeostasis during ischemia; a thermodynamic approach. Cardiovasc Res. (2000) 45:100–6. 10.1016/S0008-6363(99)00294-1
    1. Aasum E, Hafstad AD, Larsen TS. Changes in substrate metabolism in isolated mouse hearts following ischemia-reperfusion. Mol Cell Biochem. (2003) 249:97–103. 10.1023/A:1024734605562
    1. Barrick CJ, Dong A, Waikel R, Corn D, Yang F, Threadgill DW, et al. . Parent-of-origin effects on cardiac response to pressure overload in mice. Am J Phys Heart Circ Physiol. (2009) 297:H1003–9. 10.1152/ajpheart.00896.2008
    1. Garcia-Menendez L, Karamanlidis G, Kolwicz S, Tian R. Substrain specific response to cardiac pressure overload in C57BL/6 mice. Am J Physiol Heart Circ Physiol. (2013) 305:H397–402. 10.1152/ajpheart.00088.2013
    1. Schroeder MA, Lau AZ, Chen AP, Gu Y, Nagendran J, Barry J, et al. . Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail. (2013) 15:130–40. 10.1093/eurjhf/hfs192
    1. Dodd MS, Atherton HJ, Carr CA, Stuckey DJ, West JA, Griffin JL, et al. . Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ Cardiovasc Imaging (2014) 7:895–904. 10.1161/CIRCIMAGING.114.001857
    1. Seymour AM, Giles L, Ball V, Miller JJ, Clarke K, Carr CA, et al. . In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res. (2015) 106:249–60. 10.1093/cvr/cvv101
    1. Mori J, Basu R, Mclean BA, Das SK, Zhang L, Patel VB, et al. . Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail. (2012) 5:493–503. 10.1161/CIRCHEARTFAILURE.112.966705
    1. Mori J, Alrob OA, Wagg CS, Harris RA, Lopaschuk GD, Oudit GY. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol. (2013) 304:H1103–13. 10.1152/ajpheart.00636.2012
    1. Sung MM, Das SK, Levasseur J, Byrne NJ, Fung D, Kim TT, et al. . Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism. Circ Heart Fail. (2015) 8:128–37. 10.1161/CIRCHEARTFAILURE.114.001677
    1. Byrne NJ, Levasseur J, Sung MM, Masson G, Boisvenue J, Young ME, et al. . Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res. (2016) 110:249–57. 10.1093/cvr/cvw051
    1. Sung MM, Byrne NJ, Robertson IM, Kim TT, Samokhvalov V, Levasseur J, et al. . Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure. Am J Physiol Heart Circ Physiol. (2017) 312:H842–53. 10.1152/ajpheart.00455.2016
    1. Paolisso G, Gambardella A, Galzerano D, D'amore A, Rubino P, Verza M, et al. . Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism (1994) 43:174–9. 10.1016/0026-0495(94)90241-0
    1. Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, et al. . Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. (1997) 30:527–32. 10.1016/S0735-1097(97)00185-X
    1. Funada J, Betts TR, Hodson L, Humphreys SM, Timperley J, Frayn KN, et al. . Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS ONE (2009) 4:e7533. 10.1371/journal.pone.0007533
    1. Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci USA. (1991) 88:7815–9. 10.1073/pnas.88.17.7815
    1. Zorzano A, Sevilla L, Camps M, Becker C, Meyer J, Kammermeier H, et al. . Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am J Cardiol. (1997) 80:65A–76. 10.1016/S0002-9149(97)00459-1
    1. Lefebvre V, Méchin M-C, Louckx MP, Rider MH, Hue L. Signaling pathway involved in the activation of heart 6-phosphofructo-2-kinase by insulin. J Biol Chem. (1996) 271:22289–92. 10.1074/jbc.271.37.22289
    1. Hue L, Beauloye C, Marsin A-S, Bertrand L, Horman S, Rider MH. Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol. (2002) 34:1091–7. 10.1006/jmcc.2002.2063
    1. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. (2004) 381:561–79. 10.1042/BJ20040752
    1. Lopaschuk GD, Wambolt RB, Barr RL. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther. (1993) 264:135–44.
    1. Moravec J, El Alaoui-Talibi Z, Moravec M, Guendouz A. Control of oxidative metabolism in volume-overloaded rat hearts: effect of pretreatment with propionyl-L-carnitine. Adv Exp Med Biol. (1996) 388:205–12. 10.1007/978-1-4613-0333-6_25
    1. Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. . Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail. (2010) 3:420–30. 10.1161/CIRCHEARTFAILURE.109.888479
    1. Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, et al. . Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. (2010) 86:461–70. 10.1093/cvr/cvp414
    1. Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, et al. . Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation (2002) 106:606–12. 10.1161/01.CIR.0000023531.22727.C1
    1. Kolwicz SC, Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res. (2012) 111:728–38. 10.1161/CIRCRESAHA.112.268128
    1. Masoud WGT, Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR, et al. . Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res. (2014) 101:30–8. 10.1093/cvr/cvt216
    1. Recchia FA, Mcconnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res. (1998) 83:969–79. 10.1161/01.RES.83.10.969
    1. Bround MJ, Wambolt R, Cen H, Asghari P, Albu RF, Han J, et al. . Cardiac ryanodine receptor (Ryr2)-mediated calcium signals specifically promote glucose oxidation via pyruvate dehydrogenase. J Biol Chem. (2016) 291:23490–505. 10.1074/jbc.M116.756973
    1. Gupte AA, Hamilton DJ, Cordero-Reyes AM, Youker KA, Yin Z, Estep JD, et al. . Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ Cardiovasc Genet. (2014) 7:266–76. 10.1161/CIRCGENETICS.113.000404
    1. Ussher JR, Koves TR, Jaswal JS, Zhang L, Ilkayeva O, Dyck JRB, et al. . Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet–induced obese mice lacking malonyl CoA decarboxylase. Diabetes (2009) 58:1766–75. 10.2337/db09-0011
    1. Sankaralingam S, Abo Alrob O, Zhang L, Jaswal JS, Wagg CS, Fukushima A, et al. . Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox. Diabetes (2015) 64:1643–57. 10.2337/db14-1050
    1. Ho KL, Ussher JR. Cardiac energy metabolism in diabetes. Heart Metab. (2017) 73:33–36.
    1. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, et al. . Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest. (1999) 104:1703–14. 10.1172/JCI7605
    1. Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, et al. . Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation (2003) 107:448–54. 10.1161/01.CIR.0000045671.62860.98
    1. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, et al. . Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation (2004) 109:2191–6. 10.1161/01.CIR.0000127959.28627.F8
    1. Le Page LM, Rider OJ, Lewis AJ, Ball V, Clarke K, Johansson E, et al. . Increasing pyruvate dehydrogenase flux as a treatment for diabetic cardiomyopathy: a combined 13C hyperpolarized magnetic resonance and echocardiography study. Diabetes (2015) 64:2735–43. 10.2337/db14-1560
    1. Gopal K, Almutairi M, Al Batran R, Eaton F, Gandhi M, Ussher JR. Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction. Front Cardiovasc Med. (2018) 5:17. 10.3389/fcvm.2018.00017
    1. Horton JL, Martin OJ, Lai L, Riley NM, Richards AL, Vega RB, et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight (2016) 1:e84897 10.1172/jci.insight.84897
    1. Ozden O, Park SH, Wagner BA, Song HY, Zhu Y, Vassilopoulos A, et al. . SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med. (2014) 76:163–72. 10.1016/j.freeradbiomed.2014.08.001
    1. Zhang X, Ji R, Liao X, Deng LY, Castillero E, Givens R, et al. Abstract 18978: lysine acetylation of pyruvate dehydrogenase reduces enzymatic activity and contributes to impaired substrate metabolism in the failing myocardium. Circulation (2014) 130:A18978.
    1. Alrob OA, Sankaralingam S, Ma C, Wagg CS, Fillmore N, Jaswal JS, et al. . Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc. Res. (2014) 103:485–97. 10.1093/cvr/cvu156
    1. Khan D, Sarikhani M, Dasgupta S, Maniyadath B, Pandit AS, Mishra S, et al. . SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart. J Cell Physiol. (2018) 233:5478–89. 10.1002/jcp.26434
    1. Taegtmeyer H. Cardiac metabolism as a target for the treatment of heart failure. Circulation (2004) 110:894–6. 10.1161/01.CIR.0000139340.88769.D5
    1. Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest. (2005) 115:547–55. 10.1172/JCI24405
    1. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. (2008) 81:412–9. 10.1093/cvr/cvn301
    1. Sack MN, Rader TA, Park S, Bastin J, Mccune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation (1996) 94:2837–42. 10.1161/01.CIR.94.11.2837
    1. Sack MN, Disch DL, Rockman HA, Kelly DP. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci. (1997) 94:6438–43. 10.1073/pnas.94.12.6438
    1. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. (2007) 12:331–43. 10.1007/s10741-007-9034-1
    1. Lommi J, Kupari M, Yki-Järvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol. (1998) 81:45–50. 10.1016/S0002-9149(97)00804-7
    1. Nørrelund H, Wiggers H, Halbirk M, Frystyk J, Flyvbjerg A, Bøtker HE, et al. . Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure. J Int Med. (2006) 260:11–21. 10.1111/j.1365-2796.2006.01663.x
    1. Tuunanen H, Engblom E, Naum A, Scheinin M, Någren K, Airaksinen J, et al. . Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail. (2006) 12:644–52. 10.1016/j.cardfail.2006.06.005
    1. Tuunanen H, Ukkonen H, Knuuti J. Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep. (2008) 10:142–8. 10.1007/s11886-008-0024-2
    1. Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F] fluoro-6-thia-heptadecanoic acid and [18F] FDG in patients with congestive heart failure. J Nucl Med. (2001) 42:55–62.
    1. Lei B, Lionetti V, Young ME, Chandler MP, D'agostino C, Kang E, et al. . Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol. (2004) 36:567–76. 10.1016/j.yjmcc.2004.02.004
    1. Qanud K, Mamdani M, Pepe M, Khairallah RJ, Gravel J, Lei B, et al. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure. Am J Phys Heart Circ Physiol. (2008) 295:H2098–105. 10.1152/ajpheart.00471.2008
    1. Lopaschuk GD, Tsang H. Metabolism of palmitate in isolated working hearts from spontaneously diabetic “BB” Wistar rats. Circ Res. (1987) 61:853–8. 10.1161/01.RES.61.6.853
    1. Mazumder PK, O'neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, et al. . Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes (2004) 53:2366–74. 10.2337/diabetes.53.9.2366
    1. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, et al. . Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology (2005) 146:5341–9. 10.1210/en.2005-0938
    1. Lin CH, Kurup S, Herrero P, Schechtman KB, Eagon JC, Klein S, et al. . Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity (2011) 19:1804–12. 10.1038/oby.2011.186
    1. Tuunanen H, Engblom E, Naum A, Nagren K, Hesse B, Airaksinen KE, et al. . Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation (2006) 114:2130–7. 10.1161/CIRCULATIONAHA.106.645184
    1. White M, Kahn C. The insulin signaling system. J biol Chem. (1994) 269:1–4.
    1. Fukushima A, Lopaschuk GD. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids (2016) 1861:1525–34. 10.1016/j.bbalip.2016.03.020
    1. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes (2002) 51:2005–11. 10.2337/diabetes.51.7.2005
    1. Finck BN, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation (2007) 115:2540–8. 10.1161/CIRCULATIONAHA.107.670588
    1. Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol. (2008) 44:968–75. 10.1016/j.yjmcc.2008.03.021
    1. Kanda H, Nohara R, Hasegawa K, Kishimoto C, Sasayama S. A nuclear complex containing PPARα/RXRα is markedly downregulated in the hypertrophied rat left ventricular myocardium with normal systolic function. Heart Vessels (2000) 15:191–6. 10.1007/s003800070022
    1. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. (2004) 95:568–78. 10.1161/01.RES.0000141774.29937.e3
    1. Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. (2006) 116:615–22. 10.1172/JCI27794
    1. Hopkins TA, Sugden MC, Holness MJ, Kozak R, Dyck JR, Lopaschuk GD. Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-α transgenic mice. Am J Physiol Heart Circ Physiol. (2003) 285:H270–6. 10.1152/ajpheart.00852.2002
    1. Schummer CM, Werner U, Tennagels N, Schmoll D, Haschke G, Juretschke HP, et al. . Dysregulated pyruvate dehydrogenase complex in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. (2008) 294:E88–96. 10.1152/ajpendo.00178.2007
    1. Karbowska J, Kochan Z, Smolenski RT. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett. (2003) 8:49–54.
    1. Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci USA. (2006) 103:10086–91. 10.1073/pnas.0603615103
    1. Karamanlidis G, Nascimben L, Couper GS, Shekar PS, Del Monte F, Tian R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res. (2010) 106:1541–8. 10.1161/CIRCRESAHA.109.212753
    1. Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol. (2009) 46:201–12. 10.1016/j.yjmcc.2008.10.025
    1. Xiong Y, Guan K-L. Mechanistic insights into the regulation of metabolic enzymes by acetylation. J Cell Biol. (2012) 198:155–64. 10.1083/jcb.201202056
    1. Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, et al. . Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J Cell Sci. (2013) 126:4843–9. 10.1242/jcs.131300
    1. Schwer B, Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. (2008) 7:104–12. 10.1016/j.cmet.2007.11.006
    1. Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem. (2012) 287:42436–43. 10.1074/jbc.R112.404863
    1. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. . Regulation of cellular metabolism by protein lysine acetylation. Science (2010) 327:1000–4. 10.1126/science.1179689
    1. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K. Uncoupling proteins in human heart. Lancet (2004) 364:1786–8. 10.1016/S0140-6736(04)17402-3
    1. Kim G, Jo K, Kim KJ, Lee Y-H, Han E, Yoon H-J, et al. Visceral adiposity is associated with altered myocardial glucose uptake measured by 18FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes. Cardiovasc Diabetol. (2015) 14:148 10.1186/s12933-015-0310-4
    1. Li C, Lu C, Zhao X, Chen X. Comparison between myocardial infarction and diabetes mellitus damage caused angiogenesis or energy metabolism. Int J Clin Exp Med. (2015) 8:22371–6.
    1. Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, et al. . Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol. (2008) 44:694–700. 10.1016/j.yjmcc.2008.01.008
    1. Lommi J, Kupari M, Koskinen P, Näveri H, Leinonen H, Pulkki K, et al. . Blood ketone bodies in congestive heart failure. J Am Coll Cardiol. (1996) 28:665–72. 10.1016/0735-1097(96)00214-8
    1. Lommi J, Koskinen P, Näveri H, Härkönen M, Kupari M. Heart failure ketosis. J Int Med. (1997) 242:231–8. 10.1046/j.1365-2796.1997.00187.x
    1. Melenovsky V, Kotrc M, Polak J, Pelikanova T, Bendlova B, Cahova M, et al. Availability of energetic substrates and exercise performance in heart failure with or without diabetes. Eur J Heart Fail. (2014) 14:754–63. 10.1093/eurjhf/hfs080
    1. Du Z, Shen A, Huang Y, Su L, Lai W, Wang P, et al. . 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients. PLoS ONE (2014) 9:e88102. 10.1371/journal.pone.0088102
    1. Zordoky BN, Sung MM, Ezekowitz J, Mandal R, Han B, Bjorndahl TC, et al. . Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS ONE (2015) 10:e0124844. 10.1371/journal.pone.0124844
    1. Kolwicz SC, Airhart S, Tian R. Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation (2016) 133:689–91. 10.1161/CIRCULATIONAHA.116.021230
    1. Ikegami R, Shimizu I, Yoshida Y, Minamino T. Metabolomic analysis in heart failure. Circ J. (2017) 82:10–6. 10.1253/circj.CJ-17-1184
    1. Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. (1980) 60:143–87. 10.1152/physrev.1980.60.1.143
    1. Janardhan A, Chen J, Crawford PA. Altered systemic ketone body metabolism in advanced heart failure. Tex Heart Inst J. (2011) 38:533–8.
    1. Nagao M, Toh R, Irino Y, Mori T, Nakajima H, Hara T, et al. . β-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes. Biochem Biophys Res Commun. (2016) 475:322–8. 10.1016/j.bbrc.2016.05.097
    1. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al. . Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science (2013) 339:211–4. 10.1126/science.1227166
    1. Schugar RC, Moll AR, André D'avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. (2014) 3:754–69. 10.1016/j.molmet.2014.07.010
    1. Uchihashi M, Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Tateishi S, et al. . Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure. Circ Heart Fail. (2017) 10:e004417. 10.1161/CIRCHEARTFAILURE.117.004417
    1. Seki M, Powers JC, Maruyama S, Zuriaga MA, Wu CL, Kurishima C, et al. . Acute and chronic increases of circulating FSTL1 normalize energy substrate metabolism in pacing-induced heart failure. Circ Heart Fail. (2018) 11:e004486. 10.1161/CIRCHEARTFAILURE.117.004486
    1. Jeong MY, Lin YH, Wennersten SA, Demos-Davies KM, Cavasin MA, Mahaffey JH, et al. . Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med. (2018) 10:eaao0144. 10.1126/scitranslmed.aao0144
    1. Al Batran R, Ussher JR. Revisiting protein acetylation and myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol. (2017) 313:H617–9. 10.1152/ajpheart.00303.2017
    1. Williamson JR, Krebs HA. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J. (1961) 80:540–7. 10.1042/bj0800540
    1. Wieland O, Funcke HV, Löffler G. Interconversion of pyruvate dehydrogenase in rat heart muscle upon perfusion with fatty acids or ketone bodies. FEBS Lett. (1971) 15:295–8. 10.1016/0014-5793(71)80641-5
    1. Hiltunen JK, Hassinen IE. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Biochim Biophys Acta Bioenerget. (1976) 440:377–90. 10.1016/0005-2728(76)90072-4
    1. Kerbey AL, Randle PJ, Cooper RH, Whitehouse S, Pask HT, Denton RM. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. (1976) 154:327–48. 10.1042/bj1540327
    1. Gormsen LC, Svart M, Thomsen HH, Sondergaard E, Vendelbo MH, Christensen N, et al. . Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc. (2017) 6:e005066. 10.1161/JAHA.116.005066
    1. Renguet E, Ginion A, Gelinas R, Bultot L, Auquier J, Robillard Frayne I, et al. . Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. Am J Physiol Heart Circ Physiol. (2017) 313:H432–45. 10.1152/ajpheart.00738.2016
    1. Kashiwaya Y, King MT, Veech RL. Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart. Am J Cardiol. (1997) 80:50A–64. 10.1016/S0002-9149(97)00458-X
    1. Chen V, Wagner G, Spitzer JJ. Regulation of substrate oxidation in isolated myocardial cells by beta-hydroxybutyrate. Horm Metab Res. (1984) 16:243–7. 10.1055/s-2007-1014756
    1. Forsey RG, Reid K, Brosnan JT. Competition between fatty acids and carbohydrate or ketone bodies as metabolic fuels for the isolated perfused heart. Can J Physiol Pharmacol. (1987) 65:401–6. 10.1139/y87-067
    1. Stanley WC, Meadows SR, Kivilo KM, Roth BA, Lopaschuk GD. beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol Heart Circ Physiol. (2003) 285:H1626–31. 10.1152/ajpheart.00332.2003
    1. Liao R, Jain M, Cui L, D'agostino J, Aiello F, Luptak I, et al. . Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation (2002) 106:2125–31. 10.1161/01.CIR.0000034049.61181.F3
    1. Liu B, Clanachan AS, Schulz R, Lopaschuk GD. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res. (1996) 79:940–8. 10.1161/01.RES.79.5.940
    1. Lydell CP, Chan A, Wambolt RB, Sambandam N, Parsons H, Bondy GP, et al. . Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovasc Res. (2002) 53:841–51. 10.1016/S0008-6363(01)00560-0
    1. Wargovich TJ, Macdonald RG, Hill JA, Feldman RL, Stacpoole PW, Pepine CJ. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol. (1988) 61:65–70. 10.1016/0002-9149(88)91306-9
    1. Bersin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K, et al. . Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol. (1994) 23:1617–24. 10.1016/0735-1097(94)90665-3
    1. Lewis JF, Dacosta M, Wargowich T, Stacpoole P. Effects of dichloroacetate in patients with congestive heart failure. Clin Cardiol. (1998) 21:888–92. 10.1002/clc.4960211206
    1. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. (1988) 63:1036–43. 10.1161/01.RES.63.6.1036
    1. Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest. (2002) 109:1381–9. 10.1172/JCI0214596
    1. Schmidt-Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci. (2000) 99:27–35. 10.1042/cs0990027
    1. Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P, et al. . A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci. (2007) 113:205–12. 10.1042/CS20060307
    1. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. . Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation (2005) 112:3280–8. 10.1161/CIRCULATIONAHA.105.551457
    1. Coort SL, Willems J, Coumans WA, Van Der Vusse GJ, Bonen A, Glatz JF, et al. . Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol Cell Biochem. (2002) 239:213–9. 10.1023/A:1020539932353
    1. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. (2000) 86:580–8. 10.1161/01.RES.86.5.580
    1. Peng S, Zhao M, Wan J, Fang Q, Fang D, Li K. The efficacy of trimetazidine on stable angina pectoris: a meta-analysis of randomized clinical trials. Int J Cardiol. (2014) 177:780–5. 10.1016/j.ijcard.2014.10.149
    1. Fragasso G, Palloshi A, Puccetti P, Silipigni C, Rossodivita A, Pala M, et al. . A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol. (2006) 48:992–8. 10.1016/j.jacc.2006.03.060
    1. Gao D, Ning N, Niu X, Hao G, Meng Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart (2011) 97:278–86. 10.1136/hrt.2010.208751
    1. Ussher JR, Fillmore N, Keung W, Mori J, Beker DL, Wagg CS, et al. . Trimetazidine therapy prevents obesity-induced cardiomyopathy in mice. Canad J Cardiol. (2014) 30:940–4. 10.1016/j.cjca.2014.04.023
    1. Ussher JR, Keung W, Fillmore N, Koves TR, Mori J, Zhang L, et al. Treatment with the 3-ketoacyl-CoA thiolase inhibitor trimetazidine does not exacerbate whole-body insulin resistance in obese mice. J Pharmacol Exp Ther. (2014) 349:487–96. 10.1124/jpet.114.214197
    1. Chaitman BR, Pepine CJ, Parker JO, Skopal J, Chumakova G, Kuch J, et al. . Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA (2004) 291:309–16. 10.1001/jama.291.3.309
    1. Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, et al. . Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non–ST-segment–elevation acute coronary syndrome: results from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non–ST-Elevation Acute Coronary Syndrome–Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation (2007) 116:1647–52. 10.1161/CIRCULATIONAHA.107.724880
    1. Mccormack JG, Barr RL, Wolff AA, Lopaschuk GD. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation (1996) 93:135–42. 10.1161/01.CIR.93.1.135
    1. Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a “Thrifty Substrate” hypothesis. Diabetes Care (2016) 39:1108–14. 10.2337/dc16-0330
    1. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care (2016) 39:1115–22. 10.2337/dc16-0542
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. . Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. (2015) 373:2117–28. 10.1056/NEJMoa1504720
    1. Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker D, Masson G, et al. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci. (2017) 2:347–54 10.1016/j.jacbts.2017.07.003
    1. Lopaschuk GD, Verma S. Empagliflozin's fuel hypothesis: not so soon. Cell Metabolism (2016) 24:200–2. 10.1016/j.cmet.2016.07.018
    1. Stanley WC, Morgan EE, Huang H, Mcelfresh TA, Sterk JP, Okere IC, et al. . Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am J Physiol Heart Circ Physiol. (2005) 289:H2304–9. 10.1152/ajpheart.00599.2005
    1. Dyck JRB, Cheng J-F, Stanley WC, Barr R, Chandler MP, Brown S, et al. . Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res. (2004) 94:e78–84. 10.1161/01.RES.0000129255.19569.8f
    1. Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol. (2014) 64:543–53. 10.1097/FJC.0000000000000155
    1. Karwi QG, Bornbaum J, Boengler K, Torregrossa R, Whiteman M, Wood ME, et al. AP39, a mitochondria-targeting hydrogen sulfide (H2S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br J Pharmacol. (2017) 174:287–301. 10.1111/bph.13688
    1. Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic Therapy With Elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. (2016) 9:e002206. 10.1161/CIRCHEARTFAILURE.115.002206
    1. Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS, et al. . Novel mitochondria-targeting peptide in heart failure treatment. A randomized, placebo-controlled trial of elamipretide Circ Heart Fail. (2017) 10:e004389. 10.1161/CIRCHEARTFAILURE.117.004389
    1. Edes I, Kiss E, Kitada Y, Powers FM, Papp JG, Kranias EG, et al. . Effects of levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res. (1995) 77:107–13.
    1. Hasenfuss G, Pieske B, Castell M, Kretschmann B, Maier LS, Just H. Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation (1998) 98:2141–7. 10.1161/01.CIR.98.20.2141
    1. Heikki U, Markku S, Juha A, Juhani K, Meri K, Hidehiro I, et al. Myocardial efficiency during levosimendan infusion in congestive heart failure. Clin Pharmacol Ther. (2000) 68:522–31. 10.1067/mcp.2000.110972
    1. Duman D, Palit F, Simsek E, Bilgehan K, Sacide A. Effects of levosimendan versus dobutamine on left atrial function in decompensated heart failure. Canad J Cardiol. (2009) 25:e353–6. 10.1016/S0828-282X(09)70721-4
    1. Feola M, Lombardo E, Taglieri C, Vallauri P, Piccolo S, Valle R. Effects of levosimendan/furosemide infusion on Plasma Brain Natriuretic Peptide, echocardiographic parameters and cardiac output in end-stage heart failure patients. Med Sci Monit (2011) 17:PI7–13. 10.12659/MSM.881433
    1. Malfatto G, Della Rosa F, Villani A, Rella V, Branzi G, Facchini M, et al. . Intermittent levosimendan infusions in advanced heart failure: favourable effects on left ventricular function, neurohormonal balance, and one-year survival. J Cardiov Pharmacol. (2012) 60:450–5. 10.1097/FJC.0b013e31826b86aa
    1. Saima M, Daniele A, Stefania F, Elisabetta S, Gianluca P, Susanna S, et al. Levosimendan improves exercise performance in patients with advanced chronic heart failure. ESC Heart Fail. (2015) 2:133–41. 10.1002/ehf2.12047

Source: PubMed

3
Abonnieren