Exploring the Anthropometric, Cardiorespiratory, and Haematological Determinants of Marathon Performance

Georgios A Christou, Efstathios D Pagourelias, Asterios P Deligiannis, Evangelia J Kouidi, Georgios A Christou, Efstathios D Pagourelias, Asterios P Deligiannis, Evangelia J Kouidi

Abstract

Aim: We aimed to investigate the main anthropometric, cardiorespiratory and haematological factors that can determine marathon race performance in marathon runners.

Methods: Forty-five marathon runners (36 males, age: 42 ± 10 years) were examined during the training period for a marathon race. Assessment of training characteristics, anthropometric measurements, including height, body weight (n = 45) and body fat percentage (BF%) (n = 33), echocardiographic study (n = 45), cardiopulmonary exercise testing using treadmill ergometer (n = 33) and blood test (n = 24) were performed. We evaluated the relationships of these measurements with the personal best marathon race time (MRT) within a time frame of one year before or after the evaluation of each athlete.

Results: The training age regarding long-distance running was 9 ± 7 years. Training volume was 70 (50-175) km/week. MRT was 4:02:53 ± 00:50:20 h. The MRT was positively associated with BF% (r = 0.587, p = 0.001). Among echocardiographic parameters, MRT correlated negatively with right ventricular end-diastolic area (RVEDA) (r = -0.716, p < 0.001). RVEDA was the only independent echocardiographic predictor of MRT. With regard to respiratory parameters, MRT correlated negatively with maximum minute ventilation indexed to body surface area (VEmax/BSA) (r = -0.509, p = 0.003). Among parameters of blood test, MRT correlated negatively with haemoglobin concentration (r = -0.471, p = 0.027) and estimated haemoglobin mass (Hbmass) (r = -0.680, p = 0.002). After performing multivariate linear regression analysis with MRT as dependent variable and BF% (standardised β = 0.501, p = 0.021), RVEDA (standardised β = -0.633, p = 0.003), VEmax/BSA (standardised β = 0.266, p = 0.303) and Hbmass (standardised β = -0.308, p = 0.066) as independent variables, only BF% and RVEDA were significant independent predictors of MRT (adjusted R2 = 0.796, p < 0.001 for the model).

Conclusions: The main physiological determinants of better marathon performance appear to be low BF% and RV enlargement. Upregulation of both maximum minute ventilation during exercise and haemoglobin mass may have a weaker effect to enhance marathon performance.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT04738877.

Keywords: body fat percentage; cardiopulmonary exercise testing; echocardiography; haemoglobin; marathon race.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Christou, Pagourelias, Deligiannis and Kouidi.

Figures

FIGURE 1
FIGURE 1
Flowchart showing the selection of study participants. BF%, body fat percentage; BW, body weight; CPET, cardiopulmonary exercise testing; Echo, transthoracic echocardiography.
FIGURE 2
FIGURE 2
The relationship [n = 33 (27 males, 6 females)] between marathon race time and body fat percentage.
FIGURE 3
FIGURE 3
The relationship [n = 33 (27 males, 6 females)] between marathon race time and maximum minute ventilation indexed to body surface area (VEmax/BSA).
FIGURE 4
FIGURE 4
The relationship [n = 45 (36 males, 9 females)] of marathon race time with right ventricular end-diastolic area (RVEDA) and average of septal and lateral late diastolic mitral annular velocity [MVA(s-l)].
FIGURE 5
FIGURE 5
The relationship [n = 24 (19 males, 5 females)] of marathon race time with haemoglobin concentration ([Hb]) and estimated haemoglobin mass (Hbmass).
FIGURE 6
FIGURE 6
Receiver-operating characteristic (ROC) curves showing the ability of right ventricular end-diastolic area (RVEDA) [n = 45 (36 males, 9 females)] and body fat percentage (BF%) [n = 33 (27 males, 6 females)] to discriminate between athletes with marathon race time (MRT) < 3:00:00 and the ones with MRT ≥ 3:00:00.

References

    1. Akoglu H. (2018). User’s guide to correlation coefficients. Turk. J. Emerg. Med. 18 91–93. 10.1016/j.tjem.2018.08.001
    1. Alvero-Cruz J. R., Carnero E., García M. A. G., Alacid F., Correas-Gómez L., Rosemann T. J., et al. (2020). Predictive performance models in long-distance runners: a narrative review. Int. J. Environ. Res. Public Health 17:8289. 10.3390/ijerph17218289
    1. Balady G. J., Arena R., Sietsema K., Myers J., Coke L., Fletcher G. F., et al. (2010). Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122 191–225. 10.1161/CIR.0b013e3181e52e69
    1. Barandun U., Knechtle B., Knechtle P., Klipstein A., Rüst C. A., Rosemann T., et al. (2012). Running speed during training and percent body fat predict race time in recreational male marathoners. Open Access J. Sports Med. 3 51–58. 10.2147/OAJSM.S33284
    1. Bassett D. R., Jr., Howley E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32 70–84. 10.1097/00005768-200001000-00012
    1. Boer P. (1984). Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am. J. Physiol. 247(4 Pt 2) F632–F636. 10.1152/ajprenal.1984.247.4.F632
    1. Bruce R. A., Kusumi F., Hosmer D. (1973). Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 85 546–562. 10.1016/0002-8703(73)90502-4
    1. Chambers A. J., Parise E., McCrory J. L., Cham R. (2014). A comparison of prediction equations for the estimation of body fat percentage in non-obese and obese older Caucasian adults in the United States. J. Nutr. Health Aging 18 586–590. 10.1007/s12603-014-0017-3
    1. Christou G. A., Christou M. A., Žiberna L., Christou K. A. (2019). Indirect clinical markers for the detection of anabolic steroid abuse beyond the conventional doping control in athletes. Eur. J. Sport Sci. 19 1276–1286. 10.1080/17461391.2019.1587522
    1. Christou G. A., O’Driscoll J. M. (2020). The impact of demographic, anthropometric and athletic characteristics on left atrial size in athletes. Clin. Cardiol. 43 834–842. 10.1002/clc.23368
    1. Convertino V. A. (1991). Blood volume: its adaptation to endurance training. Med. Sci. Sports Exerc. 23 1338–1348.
    1. Convertino V. A., Brock P. J., Keil L. C., Bernauer E. M., Greenleaf J. E. (1980). Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 48 665–669. 10.1152/jappl.1980.48.4.665
    1. Coyle E. F. (2005). Improved muscular efficiency displayed as Tour de France champion matures. J. Appl. Physiol. (1985) 98 2191–2196. 10.1152/japplphysiol.00216.2005
    1. D’Ascenzi F., Solari M., Corrado D., Zorzi A., Mondillo S. (2018). Diagnostic differentiation between arrhythmogenic cardiomyopathy and Athlete’s heart by using imaging. JACC Cardiovasc. Imaging 11 1327–1339. 10.1016/j.jcmg.2018.04.031
    1. Duffield R., Dawson B., Goodman C. (2005). Energy system contribution to 1500- and 3000-metre track running. J. Sports Sci. 23 993–1002. 10.1080/02640410400021963
    1. Durnin J. V., Womersley J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 32 77–97. 10.1079/bjn19740060
    1. Gastin P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Med. 31 725–741. 10.2165/00007256-200131100-00003
    1. Guazzi M., Adams V., Conraads V., Halle M., Mezzani A., Vanhees L., et al. (2012). EACPR/AHA Joint Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 33 2917–2927. 10.1093/eurheartj/ehs221
    1. Guazzi M., Arena R., Halle M., Piepoli M. F., Myers J., Lavie C. J. (2018). 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 39 1144–1161. 10.1093/eurheartj/ehw180
    1. Heinicke K., Wolfarth B., Winchenbach P., Biermann B., Schmid A., Huber G., et al. (2001). Blood volume and hemoglobin mass in elite athletes of different disciplines. Int. J. Sports Med. 22 504–512. 10.1055/s-2001-17613
    1. Hill D. W. (1999). Energy system contributions in middle-distance running events. J. Sports Sci. 17 477–483. 10.1080/026404199365786
    1. Hoppeler H., Lüthi P., Claassen H., Weibel E. R., Howald H. (1973). The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 344 217–232. 10.1007/BF00588462
    1. Howley E. T., Bassett D. R., Jr., Welch H. G. (1995). Criteria for maximal oxygen uptake: review and commentary. Med. Sci. Sports Exerc. 27 1292–1301.
    1. Ingjer F. (1979). Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J. Physiol. 294 419–432. 10.1113/jphysiol.1979.sp012938
    1. Jackson A. S., Pollock M. L. (1985). Practical assessment of body composition. Phys. Sportsmed. 13 76–90. 10.1080/00913847.1985.11708790
    1. Kippelen P., Caillaud C., Robert E., Connes P., Godard P., Prefaut C. (2005). Effect of endurance training on lung function: a one year study. Br. J. Sports Med. 39 617–621. 10.1136/bjsm.2004.014464
    1. Krzywański J., Mikulski T., Pokrywka A., Młyńczak M., Krysztofiak H., Fra̧czek B., et al. (2020). Vitamin B12 status and optimal range for hemoglobin formation in elite athletes. Nutrients 12:1038. 10.3390/nu12041038
    1. Lang R. M., Badano L. P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., et al. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28 1.e–39.e. 10.1016/j.echo.2014.10.003
    1. Layton A. M., Garber C. E., Thomashow B. M., Gerardo R. E., Emmert-Aronson B. O., Armstrong H. F., et al. (2011). Exercise ventilatory kinematics in endurance trained and untrained men and women. Respir. Physiol. Neurobiol. 178 223–229. 10.1016/j.resp.2011.06.009
    1. Legaz Arrese A., González Carretero M., Lacambra Blasco I. (2006a). Adaptation of left ventricular morphology to long-term training in sprint- and endurance-trained elite runners. Eur. J. Appl. Physiol. 96 740–746. 10.1007/s00421-005-0076-6
    1. Legaz Arrese A., Munguía Izquierdo D., Serveto Galindo J. R. (2006b). Physiological measures associated with marathon running performance in high-level male and female homogeneous groups. Int. J. Sports Med. 27 289–295. 10.1055/s-2005-865628
    1. Legaz Arrese A., Serrano Ostáriz E., González Carretero M., Lacambra Blasco I. (2005). Echocardiography to measure fitness of elite runners. J. Am. Soc. Echocardiogr. 18 419–426. 10.1016/j.echo.2005.02.002
    1. Lucía A., Carvajal A., Calderón F. J., Alfonso A., Chicharro J. L. (1999). Breathing pattern in highly competitive cyclists during incremental exercise. Eur. J. Appl. Physiol. Occup. Physiol. 79 512–521. 10.1007/s004210050546
    1. Mahler D. A., Moritz E. D., Loke J. (1982). Ventilatory responses at rest and during exercise in marathon runners. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52 388–392. 10.1152/jappl.1982.52.2.388
    1. Martinez S., Aguilo A., Rodas L., Lozano L., Moreno C., Tauler P. (2018). Energy, macronutrient and water intake during a mountain ultramarathon event: the influence of distance. J. Sports Sci. 36 333–339. 10.1080/02640414.2017.1306092
    1. Nagueh S. F., Smiseth O. A., Appleton C. P., Byrd B. F., III., Dokainish H., Edvardsen T., et al. (2016). Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 29 277–314. 10.1016/j.echo.2016.01.011
    1. Nikolaidis P. T., Clemente-Suárez V. J., Chlíbková D., Knechtle B. (2021). Training, anthropometric, and physiological characteristics in men recreational marathon runners: the role of sport experience. Front. Physiol. 12:666201. 10.3389/fphys.2021.666201
    1. Otto J. M., Montgomery H. E., Richards T. (2013). Haemoglobin concentration and mass as determinants of exercise performance and of surgical outcome. Extrem. Physiol. Med. 2:33. 10.1186/2046-7648-2-33
    1. Otto J. M., Plumb J. O. M., Wakeham D., Clissold E., Loughney L., Schmidt W., et al. (2017). Total haemoglobin mass, but not haemoglobin concentration, is associated with preoperative cardiopulmonary exercise testing-derived oxygen-consumption variables. Br. J. Anaesth. 118 747–754. 10.1093/bja/aew445
    1. Pedlar C. R., Brown M. G., Shave R. E., Otto J. M., Drane A., Michaud-Finch J., et al. (2018). Cardiovascular response to prescribed detraining among recreational athletes. J. Appl. Physiol. (1985) 124 813–820. 10.1152/japplphysiol.00911.2017
    1. Pelliccia A., Caselli S., Sharma S., Basso C., Bax J. J., Corrado D., et al. (2018). European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s heart. Eur. Heart J. 39 1949–1969. 10.1093/eurheartj/ehx532
    1. Perim R. R., Signorelli G. R., Araújo C. G. (2011). Stability of relative oxygen pulse curve during repeated maximal cardiopulmonary testing in professional soccer players. Braz. J. Med. Biol. Res. 44 700–706. 10.1590/s0100-879x2011007500073
    1. Prommer N., Thoma S., Quecke L., Gutekunst T., Völzke C., Wachsmuth N., et al. (2010). Total hemoglobin mass and blood volume of elite Kenyan runners. Med. Sci. Sports Exerc. 42 791–797. 10.1249/MSS.0b013e3181badd67
    1. Raes A., Van Aken S., Craen M., Donckerwolcke R., Walle J. V. (2006). A reference frame for blood volume in children and adolescents. BMC Pediatr. 6:3. 10.1186/1471-2431-6-3
    1. Retzlaff J. A., Tauxe W. N., Kiely J. M., Stroebel C. F. (1969). Erythrocyte volume, plasma volume, and lean body mass in adult men and women. Blood 33 649–661. 10.1182/blood.v33.5.649.649
    1. Rudski L. G., Lai W. W., Afilalo J., Hua L., Handschumacher M. D., Chandrasekaran K., et al. (2010). Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 23 685–713. 10.1016/j.echo.2010.05.010
    1. Salinero J. J., Soriano M. L., Lara B., Gallo-Salazar C., Areces F., Ruiz-Vicente D., et al. (2017). Predicting race time in male amateur marathon runners. J. Sports Med. Phys. Fitness 57 1169–1177. 10.23736/S0022-4707.16.06503-8
    1. Schmidt W., Prommer N. (2005). The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur. J. Appl. Physiol. 95 486–495. 10.1007/s00421-005-0050-3
    1. Sinning W. E., Dolny D. G., Little K. D., Cunningham L. N., Racaniello A., Siconolfi S. F., et al. (1985). Validity of “generalized” equations for body composition analysis in male athletes. Med. Sci. Sports Exerc. 17 124–130.
    1. Stuempfle K. J., Hoffman M. D., Weschler L. B., Rogers I. R., Hew-Butler T. (2011). Race diet of finishers and non-finishers in a 100 mile (161 km) mountain footrace. J. Am. Coll. Nutr. 30 529–535. 10.1080/07315724.2011.10719999
    1. Tanda G., Knechtle B. (2015). Effects of training and anthropometric factors on marathon and 100 km ultramarathon race performance. Open Access J. Sports Med. 6 129–136. 10.2147/OAJSM.S80637
    1. Vila-Chã C., Falla D., Correia M. V., Farina D. (2012). Adjustments in motor unit properties during fatiguing contractions after training. Med. Sci. Sports Exerc. 44 616–624. 10.1249/MSS.0b013e318235d81d

Source: PubMed

3
Abonnieren