The Favorable Effects of a High-Intensity Resistance Training on Sarcopenia in Older Community-Dwelling Men with Osteosarcopenia: The Randomized Controlled FrOST Study

Theresa Lichtenberg, Simon von Stengel, Cornel Sieber, Wolfgang Kemmler, Theresa Lichtenberg, Simon von Stengel, Cornel Sieber, Wolfgang Kemmler

Abstract

Purpose: Sarcopenia, the loss of muscle mass combined with the loss of muscle function, has become a public health issue. There is an urgent need for interventions. The study aimed to determine the effect of high-intensity resistance training (HI-RT), a time- and cost-efficient training modality, on sarcopenia in osteosarcopenic (OS) older men.

Methods: Forty-three community-dwelling men aged ≥72 years from Northern Bavaria, Germany, with OS were randomly assigned to either an active HI-RT group (HI-RT) or an inactive control group (CG). Both received dietary protein (up to 1.5 g/kg/day in HI-RT and 1.2 g/kg/day in CG) and Vitamin-D (up to 800 IE/d) supplements. The HI-RT was applied as a consistently supervised single-set training on resistance exercise machines using intensifying strategies, with two training sessions/week, structured into three phases (ranging from 8 to 12 weeks) totaling 28 weeks. The primary study endpoint was the Sarcopenia Z-score; secondary endpoints were changes in the underlying physiological parameters, skeletal muscle mass index (SMI), handgrip-strength and gait velocity.

Results: The results show a significant effect of the exercise intervention on the sarcopenia Z-score in the HI-RT (p<0.001) and a significant worsening of it in the CG (p=0.012) in the intention-to-treat analysis, as well as a significant intergroup change (p<0.001). Analysis upon the underlying parameters showed a significant increase of skeletal muscle mass index (SMI) in the HI-RT group (p<0.001) and a significant intergroup difference of SMI (p<0.001) and handgrip strength (p<0.001). There were no adverse effects related to dietary supplementation or training.

Conclusion: The results clearly confirm the favorable effects of HI-RT on sarcopenia. We conclude that HI-RT is a feasible, highly efficient and safe training modality for combating sarcopenia, also in the elderly.

Keywords: HI-RT; SMI; community-dwelling; high-intensity resistance training; older people; osteosarcopenia; sarcopenia.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2019 Lichtenberg et al.

Figures

Figure 1
Figure 1
Participants’ flow through the study. Abbreviations: DSM-BIA, direct-segmental multi-frequency bioimpedance analysis; DXA, dual-energy X-ray absorptiometry; HI-RT, high-intensity resistance training; CG, control group; FU, follow-up; ITT, intention to treat.
Figure 2
Figure 2
Exercise protocol. Abbreviations: reps, repetitions; con, concentric; iso, isometric; ecc, eccentric; nRM, non-repetition maximum; RM, one-repetition maximum.

References

    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–423. doi:10.1093/ageing/afq034
    1. Bruyère O, Beaudart C, Locquet M, Buckinx F, Petermans J, Reginster JY. Sarcopenia as a public health problem. Eur Geriatr Med. 2016;7(3):272–275. doi:10.1016/j.eurger.2015.12.002
    1. Scott D, Shore-Lorenti C, McMillan L, et al. Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr. 2018;75:125–131. doi:10.1016/j.archger.2017.12.006
    1. Balogun S, Winzenberg T, Wills K, et al. Prospective associations of low muscle mass and function with 10-year falls risk, incident fracture and mortality in community-dwelling older adults. J Nutr Health Aging. 2017;21(7):843–848. doi:10.1007/s12603-016-0843-6
    1. Sornay-Rendu E, Duboeuf F, Boutroy S, Chapurlat RD. Muscle mass is associated with incident fracture in postmenopausal women: the OFELY study. Bone. 2017;94:108–113. doi:10.1016/j.bone.2016.10.024
    1. Hars M, Trombetti A. Body composition assessment in the prediction of osteoporotic fractures. Curr Opin Rheumatol. 2017;29(4):394–401. doi:10.1097/BOR.0000000000000406
    1. Kim HT, Kim HJ, Ahn HY, Hong YH. An analysis of age-related loss of skeletal muscle mass and its significance on osteoarthritis in a Korean population. Korean J Intern Med. 2016;31(3):585–593. doi:10.3904/kjim.2015.156
    1. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96(9):2898–2903. doi:10.1210/jc.2011-0435
    1. Hirasawa Y, Matsuki R, Ebisu T, Kurose T, Hamamoto Y, Seino Y. Evaluation of skeletal muscle mass indices, assessed by bioelectrical impedance, as indicators of insulin resistance in patients with type 2 diabetes. J Phys Ther Sci. 2019;31(2):190–194. doi:10.1589/jpts.31.190
    1. Uematsu M, Akashi YJ, Ashikaga K, et al. Association between heart rate at rest and myocardial perfusion in patients with acute myocardial infarction undergoing cardiac rehabilitation - a pilot study. Arch Med Sci. 2012;8(4):622–630. doi:10.5114/aoms.2012.30285
    1. Gariballa S, Alessa A. Association between muscle function, cognitive state, depression symptoms and quality of life of older people: evidence from clinical practice. Aging Clin Exp Res. 2018;30(4):351–357. doi:10.1007/s40520-017-0775-y
    1. Beaudart C, Biver E, Bruyere O, et al. Quality of life assessment in musculo-skeletal health. Aging Clin Exp Res. 2018;30(5):413–418. doi:10.1007/s40520-017-0794-8
    1. Prado CM, Purcell SA, Alish C, et al. Implications of low muscle mass across the continuum of care: a narrative review. Ann Med. 2018;50(8):675–693. doi:10.1080/07853890.2018.1511918
    1. Dos Santos L, Cyrino ES, Antunes M, Santos DA, Sardinha LB. Sarcopenia and physical independence in older adults: the independent and synergic role of muscle mass and muscle function. J Cachexia Sarcopenia Muscle. 2017;8(2):245–250. doi:10.1002/jcsm.v8.2
    1. Tsekoura M, Kastrinis A, Katsoulaki M, Billis E, Gliatis J. Sarcopenia and its impact on quality of life. Adv Exp Med Biol. 2017;987:213–218.
    1. Beaudart C, Locquet M, Reginster JY, Delandsheere L, Petermans J, Bruyere O. Quality of life in sarcopenia measured with the SarQoL(R): impact of the use of different diagnosis definitions. Aging Clin Exp Res. 2018;30(4):307–313. doi:10.1007/s40520-017-0866-9
    1. Kojima G. Frailty as a predictor of nursing home placement among community-dwelling older adults: a systematic review and meta-analysis. J Geriatr Phys Ther. 2018;41(1):42–48. doi:10.1519/JPT.0000000000000097
    1. Beaudart C, Rizzoli R, Bruyere O, Reginster JY, Biver E. Sarcopenia: burden and challenges for public health. Arch Public Health. 2014;72(1):45. doi:10.1186/2049-3258-72-45
    1. Bruyere O, Beaudart C, Ethgen O, Reginster JY, Locquet M. The health economics burden of sarcopenia: a systematic review. Maturitas. 2019;119:61–69. doi:10.1016/j.maturitas.2018.11.003
    1. Liguori I, Russo G, Aran L, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging. 2018;13:913–927. doi:10.2147/CIA.S149232
    1. Vlietstra L, Hendrickx W, Waters DL. Exercise interventions in healthy older adults with sarcopenia: a systematic review and meta-analysis. Australas J Ageing. 2018;37(3):169–183. doi:10.1111/ajag.2018.37.issue-3
    1. Beckwée D, Delaere A, Aelbrecht S, et al. Exercise interventions for the prevention and treatment of sarcopenia. a systematic umbrella review. J Nutr Health Aging. 2019;23:494–502. doi:10.1007/s12603-019-1196-8
    1. Giessing J, Eichmann B, Steele J, Fisher J. A comparison of low volume ‘high-intensity-training’ and high volume traditional resistance training methods on muscular performance, body composition, and subjective assessments of training. Biol Sport. 2016;33(3):241–249. doi:10.5604/20831862.1201813
    1. Law TD, Clark LA, Clark BC. Resistance exercise to prevent and manage sarcopenia and dynapenia. Annu Rev Gerontol Geriatr. 2016;36(1):205–228. doi:10.1891/0198-8794.36.205
    1. Bauer J, Biolo G, Cederholm T, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14(8):542–559. doi:10.1016/j.jamda.2013.05.021
    1. Komar B, Schwingshackl L, Hoffmann G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J Nutr Health Aging. 2015;19(4):437–446. doi:10.1007/s12603-014-0559-4
    1. Rodrigues I, Armstrong J, Adachi J, Macdermid J. Facilitators and barriers to exercise adherence in patients with osteopenia and osteoporosis: a systematic review. Osteoporosis Int. 2016;27:1–11.
    1. Rütten A, Abu-Omar K, Meierjürgen R, Lutz A, Adlwarth W. Was bewegt die, Nicht-Beweger? Prävention und Gesundheitsförderung. 2009;4:245–250.
    1. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017;16:21. doi:10.1186/s40200-017-0302-x
    1. Tan LF, Lim ZY, Choe R, Seetharaman S, Merchant R. Screening for frailty and sarcopenia among older persons in medical outpatient clinics and its associations with healthcare burden. J Am Med Dir Assoc. 2017;18(7):583–587. doi:10.1016/j.jamda.2017.01.004
    1. Gani F, Buettner S, Margonis GA, et al. Sarcopenia predicts costs among patients undergoing major abdominal operations. Surgery. 2016;160(5):1162–1171. doi:10.1016/j.surg.2016.05.002
    1. Antunes AC, Araujo DA, Verissimo MT, Amaral TF. Sarcopenia and hospitalisation costs in older adults: a cross-sectional study. Nutr Diet. 2017;74(1):46–50. doi:10.1111/ndi.2017.74.issue-1
    1. Raubold K. Gesundheitsrelevante Auswirkungen Eines Hochintensiven Muskeltrainings Mit Senioren. Hamburg: Verlag Dr. Kovač; 2017.
    1. Kemmler W, Stengel S, Weineck J, Engelke K. Exercise Recommendations for an Increase of Bone Strength Based on Animal Models and Studies with Athletes. Deutsche Zeitschrift für Sportmedizin Vol. 54 2003.
    1. Kemmler W, Von Stengel S. Exercise and osteoporosis-related fractures: perspectives and recommendations of the sports and exercise scientist. Phys Sportsmed. 2011;39(1):142–157. doi:10.3810/psm.2011.02.1872
    1. Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 1990;69(4):1442–1450. doi:10.1152/jappl.1990.69.4.1442
    1. Kemmler W, Weissenfels A, Teschler M, et al. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: the randomized controlled FranSO study. Clin Interv Aging. 2017;12:1503–1513. doi:10.2147/CIA.S137987
    1. Kemmler W, von Stengel S, Schoene D. Longitudinal changes in muscle mass and function in older men at increased risk for sarcopenia - The FrOST-Study. J Frailty Aging. 2019;8(2):57–61.
    1. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–763. doi:10.1093/oxfordjournals.aje.a009520
    1. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843(1–129).
    1. Steele J, Fisher J, Giessing J, Gentil P. Clarity in reporting terminology and definitions of set endpoints in resistance training. Muscle Nerve. 2017;56(3):368–374. doi:10.1002/mus.v56.3
    1. Steele J. Intensity; in-ten-si-ty; noun. 1. Often used ambiguously within resistance training. 2. Is it time to drop the term altogether? Br J Sports Med. 2014;48(22):1586–1588. doi:10.1136/bjsports-2012-092127
    1. Giessing J, Preuss P, Greiwing A, et al. Fundamental definitions of decisive training parameters of single-set training and multiple-set training for muscle hypertrophy In: Giessing J, Frohlich M, Preuss P, editors. Current Results of Strength Training Research: An Empirical and Theoretical Approach. Vol. 1 Goettingen: Cuvillier Verlag; 2005:9–23.
    1. Kemmler WK, Lauber D, Wassermann A, Mayhew JL. Predicting maximal strength in trained postmenopausal woman. J Strength Cond Res. 2006;20(4):838–842. doi:10.1519/R-18905.1
    1. DVO Leitlinie, Osteoporose 2017. Available from: . Published 2017. Accessed January06, 2019.
    1. Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc. 2008;56(9):1710–1715. doi:10.1111/j.1532-5415.2008.01854.x
    1. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159(4):413–421. doi:10.1093/aje/kwh058
    1. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002;162(18):2074–2079. doi:10.1001/archinte.162.18.2074
    1. Kemmler W, Teschler M, Weissenfels A, Sieber C, Freiberger E, von Stengel S. Prevalence of sarcopenia and sarcopenic obesity in older German men using recognized definitions: high accordance but low overlap! Osteoporos Int. 2017;28(6):1881–1891. doi:10.1007/s00198-017-3964-9
    1. Baumgartner RN, Ross R, Heymsfield SB. Does adipose tissue influence bioelectric impedance in obese men and women? J Appl Physiol (1985). 1998;84(1):257–262. doi:10.1152/jappl.1998.84.1.257
    1. Kressig RW, Beauchet O. Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clin Exp Res. 2006;18(2):174–176. doi:10.1007/BF03327437
    1. Peters DM, Fritz SL, Krotish DE. Assessing the reliability and validity of a shorter walk test compared with the 10-meter walk test for measurements of gait speed in healthy, older adults. J Geriatr Phys Ther. 2013;36(1):24–30. doi:10.1519/JPT.0b013e318248e20d
    1. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am. 1984;9(2):222–226. doi:10.1016/S0363-5023(84)80146-X
    1. Kemmler W, Weineck J, Kalender WA, Engelke K. The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact. 2004;4(3):325–334.
    1. Honaker J, King G, Blackwell M. Amelia II: a program for missing data. J Stat Softw. 2011;45(7):47.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, N.J.: L. Erlbaum Associates; 1988.
    1. Schäfer I, von Leitner E-C, Schön G, et al. Multimorbidity patterns in the elderly: a new approach of disease clustering identifies complex interrelations between chronic conditions. PLoS One. 2010;5(12):e15941–e15941. doi:10.1371/journal.pone.0015941
    1. Lancha AH Jr., Zanella R Jr., Tanabe SG, Andriamihaja M, Blachier F. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids. 2017;49(1):33–47.
    1. Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr. 2015;113(1):25–34. doi:10.1017/S0007114514002475
    1. Cheng H, Kong J, Underwood C, et al. Systematic review and meta-analysis of the effect of protein and amino acid supplements in older adults with acute or chronic conditions. Br J Nutr. 2018;119(5):527–542. doi:10.1017/S0007114517003816
    1. Bauer JM, Verlaan S, Bautmans I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16(9):740–747. doi:10.1016/j.jamda.2015.05.021
    1. Devries MC, McGlory C, Bolster DR, et al. Leucine, not total protein, content of a supplement is the primary determinant of muscle protein anabolic responses in healthy older women. J Nutr. 2018;148(7):1088–1095. doi:10.1093/jn/nxy091
    1. Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376–384. doi:10.1136/bjsports-2017-097608
    1. Thomas DK, Quinn MA, Saunders DH, Greig CA. Protein supplementation does not significantly augment the effects of resistance exercise training in older adults: a systematic review. J Am Med Dir Assoc. 2016;17(10):959.e951-959. doi:10.1016/j.jamda.2016.07.002
    1. Verreijen AM, Engberink MF, Houston DK, et al. Dietary protein intake is not associated with 5-y change in mid-thigh muscle cross-sectional area by computed tomography in older adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2019;109(3):535–543. doi:10.1093/ajcn/nqy341
    1. Rizzoli R, Stevenson JC, Bauer JM, et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas. 2014;79(1):122–132. doi:10.1016/j.maturitas.2014.07.005
    1. Liao CD, Tsauo JY, Wu YT, et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr. 2017;106(4):1078–1091. doi:10.3945/ajcn.116.143594
    1. Maltais ML, Ladouceur JP, Dionne IJ. The effect of resistance training and different sources of postexercise protein supplementation on muscle mass and physical capacity in sarcopenic elderly men. J Strength Cond Res. 2016;30(6):1680–1687. doi:10.1519/JSC.0000000000001255
    1. Csapo R, Alegre LM. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: a meta-analysis. Scand J Med Sci Sports. 2016;26(9):995–1006. doi:10.1111/sms.2016.26.issue-9
    1. MR RHEA, BA ALVAR, LN BURKETT, SD BALL. A meta-analysis to determine the dose response for strength development. Med Sci Sports Exercise. 2003;35(3):456–464. doi:10.1249/01.MSS.0000053727.63505.D4
    1. TAN B. Manipulating resistance training program variables to optimize maximum strength in men: a review. J Strength Cond Res. 1999;13(3):289–304. doi:10.1519/00124278-199908000-00019
    1. Bartolomei S. Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur J Appl Physiol. 2017;117(7):1287–1298. doi:10.1007/s00421-017-3598-9
    1. Visser M, Pahor M, Taaffe DR, et al. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci. 2002;57(5):M326–M332. doi:10.1093/gerona/57.5.M326
    1. Westbury LD, Fuggle NR, Syddall HE, et al. Relationships between markers of inflammation and muscle mass, strength and function: findings from the Hertfordshire Cohort Study. Calcif Tissue Int. 2018;102(3):287–295. doi:10.1007/s00223-017-0354-4
    1. Lamotte M, Niset G, van de Borne P. The effect of different intensity modalities of resistance training on beat-to-beat blood pressure in cardiac patients. Eur J Cardiovasc Prev Rehabil. 2005;12(1):12–17. doi:10.1177/204748730501200103
    1. Chin SO, Rhee SY, Chon S, et al. Sarcopenia is independently associated with cardiovascular disease in older Korean adults: the Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS One. 2013;8(3):e60119. doi:10.1371/journal.pone.0060119
    1. Kemmler W, Teschler M, Weissenfels A, et al. Effects of whole-body electromyostimulation versus high-intensity resistance exercise on body composition and strength: a randomized controlled study. Evid Based Complement Alternat Med. 2016;2016:9236809. doi:10.1155/2016/9236809
    1. Curry JJ Endurance & strength training help reduce fat. The Times picayune. 1993;September 1.
    1. Holloszy JO. Exercise, health, and aging: a need for more information. Med Sci Sports Exerc. 1983;15(1):1–5. doi:10.1249/00005768-198315010-00003
    1. Goisser S, Kemmler W, Porzel S, et al. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons–a narrative review. Clin Interv Aging. 2015;10:1267–1282. doi:10.2147/CIA.S82454
    1. McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol (1985). 1996;81(5):2004–2012. doi:10.1152/jappl.1996.81.5.2004
    1. Hepple RT, Mackinnon SL, Goodman JM, Thomas SG, Plyley MJ. Resistance and aerobic training in older men: effects on VO2peak and the capillary supply to skeletal muscle. J Appl Physiol (1985). 1997;82(4):1305–1310. doi:10.1152/jappl.1997.82.4.1305
    1. Payne S, Macintosh A, Stock J. Body size and body composition effects on heat loss from the hands during severe cold exposure. Am J Phys Anthropol. 2018;166(2):313–322. doi:10.1002/ajpa.v166.2
    1. SLN. Available from: . Accessed July13, 2019.
    1. Sahoo SK, Shaikh SA, Sopariwala DH, Bal NC, Periasamy M. Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J Biol Chem. 2013;288(10):6881–6889. doi:10.1074/jbc.M112.436915
    1. Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev. 2015;90(4):1279–1297.
    1. Maurya SK, Bal NC, Sopariwala DH, et al. Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity. J Biol Chem. 2015;290(17):10840–10849. doi:10.1074/jbc.M115.636878
    1. Leong DP, Teo KK, Rangarajan S, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet (London, England). 2015;386(9990):266–273. doi:10.1016/S0140-6736(14)62000-6
    1. Ibrahim K, May C, Patel HP, Baxter M, Sayer AA, Roberts H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot Feasibility Stud. 2016;2:27. doi:10.1186/s40814-016-0067-x
    1. Mijnarends DM, Meijers JM, Halfens RJ, et al. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc. 2013;14(3):170–178. doi:10.1016/j.jamda.2012.10.009
    1. Guideline for the prevention of falls in older persons. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. J Am Geriatr Soc. 2001;49(5):664–672.
    1. Sayer AA, Syddall HE, Martin HJ, Dennison EM, Anderson FH, Cooper C. Falls, sarcopenia, and growth in early life: findings from the Hertfordshire cohort study. Am J Epidemiol. 2006;164(7):665–671. doi:10.1093/aje/kwj255
    1. Furrer R, van Schoor NM, de Haan A, Lips P, de Jongh RT. Gender-specific associations between physical functioning, bone quality, and fracture risk in older people. Calcif Tissue Int. 2014;94(5):522–530.
    1. Silventoinen K, Magnusson PK, Tynelius P, Batty GD, Rasmussen F. Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: a population-based cohort study of one million Swedish men. Int J Epidemiol. 2009;38(1):110–118. doi:10.1093/ije/dyn231
    1. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England). 2012;380(9859):2197–2223. doi:10.1016/S0140-6736(12)61689-4
    1. Kemmler W, von Stengel S, Kast S, Sieber C, Freiberger E. Longitudinal changes in sarcopenia criteria in older men with low skeletal muscle mass index: a 2-year observational study. J Sci Sport Exercise. 2019;1(1):59–68. doi:10.1007/s42978-019-0006-7
    1. Clark DJ, Manini TM, Fielding RA, Patten C. Neuromuscular determinants of maximum walking speed in well-functioning older adults. Exp Gerontol. 2013;48(3):358–363. doi:10.1016/j.exger.2013.01.010
    1. Sakari R, Era P, Rantanen T, Leskinen E, Laukkanen P, Heikkinen E. Mobility performance and its sensory, psychomotor and musculoskeletal determinants from age 75 to age 80. Aging Clin Exp Res. 2010;22(1):47–53. doi:10.1007/BF03324815
    1. Smith-Ray RL, Hughes SL, Prohaska TR, Little DM, Jurivich DA, Hedeker D. Impact of cognitive training on balance and gait in older adults. J Gerontol B Psychol Sci Soc Sci. 2015;70(3):357–366. doi:10.1093/geronb/gbt097
    1. Viitasalo JT, Era P, Leskinen AL, Heikkinen E. Muscular strength profiles and anthropometry in random samples of men aged 31–35, 51–55 and 71–75 years. Ergonomics. 1985;28(11):1563–1574. doi:10.1080/00140138508963288
    1. Lemke MR, Wendorff T, Mieth B, Buhl K, Linnemann M. Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls. J Psychiatr Res. 2000;34(4–5):277–283. doi:10.1016/S0022-3956(00)00017-0
    1. Wernbom M, Augustsson J, Thomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–264. doi:10.2165/00007256-200737030-00004
    1. Fujimoto K, Inage K, Eguchi Y, et al. Use of bioelectrical impedance analysis for the measurement of appendicular skeletal muscle mass/whole fat mass and its relevance in assessing osteoporosis among patients with low back pain: a comparative analysis using dual x-ray absorptiometry. Asian Spine J. 2018;12(5):839–845. doi:10.31616/asj.2018.12.5.839
    1. Kemmler W, Stengel S, Kohl M. Developing Sarcopenia Criteria and Cutoffs for an Older Caucasian Cohort – A Strictly Biometrical Approach. Clin Interv Aging Vol. 13 2018. doi:10.2147/CIA.S167899
    1. Ling CH, de Craen AJ, Slagboom PE, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30(5):610–615. doi:10.1016/j.clnu.2011.04.001

Source: PubMed

3
Abonnieren