Identification of an abbreviated test battery for detection of HIV-associated neurocognitive impairment in an early-managed HIV-infected cohort

David J Moore, Mollie J P Roediger, Lynn E Eberly, Kaitlin Blackstone, Braden Hale, Amy Weintrob, Anuradha Ganesan, Brian K Agan, Scott L Letendre, Nancy F Crum-Cianflone, David J Moore, Mollie J P Roediger, Lynn E Eberly, Kaitlin Blackstone, Braden Hale, Amy Weintrob, Anuradha Ganesan, Brian K Agan, Scott L Letendre, Nancy F Crum-Cianflone

Abstract

Background: HIV-associated neurocognitive disorders (HAND) remain prevalent despite improved antiretroviral treatment (ART), and it is essential to have a sensitive and specific HAND screening tool.

Methods: Participants were 200 HIV-infected US military beneficiaries, managed early in the course of HIV infection, had few comorbidities, and had open access to ART. Participants completed a comprehensive, seven-domain (16-test), neuropsychological battery (∼120 min); neurocognitive impairment (NCI) was determined using a standardized score derived from demographically adjusted T-scores (global deficit score ≥0.5). Restricting the estimated administration time of the screening battery to < = 20 minutes, we examined the sensitivity and specificity of detecting NCI for all possible combinations of 2-, 3-, and 4- tests from the comprehensive battery.

Results: Participants were relatively healthy (median CD4 count: 546 cells/mm(3)) with 64% receiving ART. Prevalence of NCI was low (19%). The best 2-test screener included the Stroop Color Test and the Hopkins Verbal Learning Test-Revised (11 min; sensitivity = 73%; specificity = 83%); the best 3-test screener included the above measures plus the Paced Auditory Serial Addition Test (PASAT; 16 min; sensitivity = 86%; specificity = 75%). The addition of Action Fluency to the above three tests improved specificity (18 min; sensitivity = 86%; specificity = 87%).

Conclusions: Combinations of widely accepted neuropsychological tests with brief implementation time demonstrated good sensitivity and specificity compared to a time intensive neuropsychological test battery. Tests of verbal learning, attention/working memory, and processing speed are particularly useful in detecting NCI. Utilizing validated, easy to administer, traditional neuropsychological tests with established normative data may represent an excellent approach to screening for NCI in HIV.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, et al. (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75: 2087–2096.
    1. Butters N, Grant I, Haxby J, Judd LL, Martin A, et al. (1990) Assessment of AIDS-related cognitive changes: recommendations of the NIMH Workshop on Neuropsychological Assessment Approaches. J Clin Exp Neuropsychol 12: 963–978.
    1. Malloy PF, Cummings JL, Coffey CE, Duffy J, Fink M, et al. (1997) Cognitive screening instruments in neuropsychiatry: a report of the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 9: 189–197.
    1. Mattis S (1988) Dementia Rating Scale: Odessa, FL.
    1. Cherner M, Masliah E, Ellis RJ, Marcotte TD, Moore DJ, et al. (2002) Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59: 1563–1567.
    1. Moore DJ, Masliah E, Rippeth JD, Gonzalez R, Carey C, et al. (2006) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20: 879–887.
    1. Reger M, Welsh R, Razani J, Martin DJ, Boone KB (2002) A meta-analysis of the neuropsychological sequelae of HIV infection. J Int Neuropsychol Soc 8: 410–424.
    1. Power C, Selnes OA, Grim JA, McArthur JC (1995) HIV Dementia Scale: a rapid screening test. J Acquir Immune Defic Syndr Hum Retrovirol 8: 273–278.
    1. McArthur JC, Brew BJ (2010) HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS 24: 1367–1370.
    1. Carey CL, Woods SP, Rippeth JD, Gonzalez R, Moore DJ, et al. (2004) Initial validation of a screening battery for the detection of HIV-associated cognitive impairment. Clin Neuropsychol 18: 234–248.
    1. Smith CA, van Gorp WG, Ryan ER, Ferrando SJ, Rabkin J (2003) Screening subtle HIV-related cognitive dysfunction: the clinical utility of the HIV dementia scale. J Acquir Immune Defic Syndr 33: 116–118.
    1. Richardson MA, Morgan EE, Vielhauer MJ, Cuevas CA, Buondonno LM, et al. (2005) Utility of the HIV dementia scale in assessing risk for significant HIV-related cognitive-motor deficits in a high-risk urban adult sample. AIDS Care 17: 1013–1021.
    1. Morgan EE, Woods SP, Scott JC, Childers M, Marquie-Beck J, et al. (2008) Predictive validity of demographically adjusted normative standards for the HIV Dementia Scale. J Clin Exp Neuropsychol 30: 83–90.
    1. Jones BN, Teng EL, Folstein MF, Harrison KS (1993) A new bedside test of cognition for patients with HIV infection. Ann Intern Med 119: 1001–1004.
    1. Berghuis JP, Uldall KK, Lalonde B (1999) Validity of two scales in identifying HIV-associated dementia. J Acquir Immune Defic Syndr 21: 134–140.
    1. Cysique LA, Maruff P, Brew BJ (2004) Antiretroviral therapy in HIV infection: are neurologically active drugs important? Arch Neurol 61: 1699–1704.
    1. Sacktor NC, Wong M, Nakasujja N, Skolasky R, Selnes O, et al. (2005) The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS 19: 1367–1374.
    1. Marconi VC, Grandits GA, Weintrob AC, Chun H, Landrum ML, et al. (2010) Outcomes of highly active antiretroviral therapy in the context of universal access to healthcare: the U.S. Military HIV Natural History Study. AIDS Res Ther 7: 14.
    1. Cherner M, Suarez P, Lazzaretto D, Fortuny LA, Mindt MR, et al. (2007) Demographically corrected norms for the Brief Visuospatial Memory Test-revised and Hopkins Verbal Learning Test-revised in monolingual Spanish speakers from the U.S.-Mexico border region. Arch Clin Neuropsychol 22: 343–353.
    1. Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, et al. (2004) The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc 10: 317–331.
    1. Norman MA, Moore DJ, Taylor M, Franklin D Jr, Cysique L, et al. (2011) Demographically corrected norms for African Americans and Caucasians on the Hopkins Verbal Learning Test-Revised, Brief Visuospatial Memory Test-Revised, Stroop Color and Word Test, and Wisconsin Card Sorting Test 64-Card Version. J Clin Exp Neuropsychol 33: 793–804.
    1. Woods SP, Scott JC, Fields JA, Poquette A, Troster AI (2008) Executive dysfunction and neuropsychiatric symptoms predict lower health status in essential tremor. Cogn Behav Neurol 21: 28–33.
    1. Efron BT (1998) An Introduction to the Bootstrap. Boca Raton: Chapman and Hall.
    1. SAS [computer program]. Version 9.1. Cary, N.C.
    1. Ellis RJ, Evans SR, Clifford DB, Moo LR, McArthur JC, et al. (2005) Clinical validation of the NeuroScreen. J of Neurovirol 11: 503–511.
    1. Valcour VG (2011) Evaluating cognitive impairment in the clinical setting: practical screening and assessment tools. Top Antivir Med 19: 175–180.
    1. Gorman AA, Foley JM, Ettenhofer ML, Hinkin CH, van Gorp WG (2009) Functional consequences of HIV-associated neuropsychological impairment. Neuropsychol Rev 19: 186–203.
    1. Ettenhofer ML, Foley J, Castellon SA, Hinkin CH (2010) Reciprocal prediction of medication adherence and neurocognition in HIV/AIDS. Neurology 74: 1217–1222.
    1. Parsons TD, Braaten AJ, Hall CD, Robertson KR (2006) Better quality of life with neuropsychological improvement on HAART. Health Qual Life Outcomes 4: 11.
    1. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, et al. (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17: 3–16.
    1. Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19: 152–168.
    1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, et al. (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69: 1789–1799.
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, et al. (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53: 695–699.
    1. Achenbach TM, Edelbrock C, Howell CT (1987) Empirically based assessment of the behavioral/emotional problems of 2- and 3- year-old children. J Abnorm Child Psychol 15: 629–650.

Source: PubMed

3
Abonnieren