A Prospective Evaluation of the Acute Effects of High Altitude on Cognitive and Physiological Functions in Lowlanders

Marika Falla, Costanza Papagno, Tomas Dal Cappello, Anna Vögele, Katharina Hüfner, Jenny Kim, Elisabeth M Weiss, Bernhard Weber, Martin Palma, Simona Mrakic-Sposta, Hermann Brugger, Giacomo Strapazzon, Marika Falla, Costanza Papagno, Tomas Dal Cappello, Anna Vögele, Katharina Hüfner, Jenny Kim, Elisabeth M Weiss, Bernhard Weber, Martin Palma, Simona Mrakic-Sposta, Hermann Brugger, Giacomo Strapazzon

Abstract

Cognitive function impairment due to high altitude exposure has been reported with some contradictory results regarding the possible selective cognitive domain involvement. We prospectively evaluated in 36 lowlanders, exposed for 3 consecutive days to an altitude of 3,269 m, specific cognitive abilities (attention, processing speed, and decision-making) required to safely explore the mountains, as well as to work at altitude. We simultaneously monitored the physiological parameters. Our study provides evidence of a reduced processing speed in lowlanders when exposed to altitude in the first 24 h. There was a fairly quick recovery since this impairment was no more detectable after 36 h of exposure. There were no clinically relevant effects on decision-making, while psychomotor vigilance was unaffected at altitude except for individuals with poor sleep. Significant changes were seen in physiological parameters (increased heart rate and reduced peripheral oxygen saturation). Our results may have practical implications, suggesting that individuals should practice prudence with higher ascent when performing risky activities in the first 24-36 h, even at altitudes below 3,500 m, due to an impairment of the cognitive performance that could worsen and lead to accidents.

Keywords: altitude; attention; cognitive functions; decision-making; speed-processing.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Falla, Papagno, Dal Cappello, Vögele, Hüfner, Kim, Weiss, Weber, Palma, Mrakic-Sposta, Brugger and Strapazzon.

Figures

Figure 1
Figure 1
Timeline of cognitive test, questionnaires administration, and physiological-parameter recording. BART, Balloon Analogue Risk Task; D, day; DSST, Digit Symbol Substitution Test; GQ, general questionnaire; HR, heart rate; ISI, Insomnia Severity Index; LLS, Lake Louise Score; PVT, Psychomotor Vigilance Test; S, session; SpO2, peripheral oxygen saturation; STAI, State and Trait Anxiety Inventory (Y1-state and Y2-trait).
Figure 2
Figure 2
Boxplots of Lake Louise Score (LLS), Insomnia Severity Index (ISI), State and Trait Anxiety Inventory (STAI-Y1-state), Heart rate (HR), and peripheral oxygen saturation (SpO2) at baseline and sessions at altitude (3,269 m). Test performed was Friedman test. Pairwise comparisons were analyzed by means of Wilcoxon signed-rank test and the p-values were adjusted by means of Holm-Bonferroni correction. Statistically significant (p < 0.05) pairwise comparisons were denoted by the following symbols: *for session 1 (day 1, 8:00–12:00 AM) vs. session 2 (day 1, 6:00–10:00 PM), °for session 1 vs. session 3 (day 2, 6:00–8:00 AM), ¶for session 1 vs. session 4 (day 3, 6:00–8:00 AM), ^for session 2 vs. session 3, §for session 2 vs. session 4, and #for session 3 vs. session 4. bpm, beats per minute; •, outlier.
Figure 3
Figure 3
Boxplots of cognitive test parameters at baseline and sessions at altitude (3,269 m). The p-values were calculated by means of generalized estimating equations (GEE) and adjusted by means of Holm-Bonferroni correction. Statistically significant (p < 0.05) pairwise comparisons were denoted by the following symbols: *for session 1 (day 1, 8:00–12:00 AM) vs. session 2 (day 1, 6:00–10:00 PM), ¶for session 1 vs. session 4 (day 3, 6:00–8:00 AM), §for session 2 vs. session 4, and #for session 3 (day 2, 6:00–8:00 AM) vs. session 4. BART, Balloon Analogue Risk Task; DSST, Digit Symbol Substitution Test; PVT, Psychomotor Vigilance Test; RT, reaction time; •, outlier.

References

    1. Basner M., Mollicone D., Dinges D. F. (2011). Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronaut. 69, 949–959. 10.1016/j.actaastro.2011.07.015, PMID:
    1. Berry D. T. R., McConnell J. W., Phillips B. A., Carswell C. M., Lamb D. G., Prine B. C. (1989). Isocapnic hypoxemia and neuropsychological functioning. J. Clin. Exp. Neuropsychol. 11, 241–251. 10.1080/01688638908400886
    1. Brodmann M. M., Brugger H., Pun M., Strapazzon G., Dal C. T., Maggiorini M., et al. . (2018). The STAR data reporting guidelines for clinical high altitude research. High Alt. Med. Biol. 19, 7–14. 10.1089/ham.2017.0160, PMID:
    1. Buysse D. J., Reynolds C. F., III., Monk T. H., Berman S. R., Kupfer D. J. (1989). The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213. 10.1016/0165-1781(89)90047-4, PMID:
    1. Cohen S., Williamson G. M. (1988). “Perceived Stress in a Probability Sample in the United States,” in The Social Psychology of Health. eds. Spacapan S., Oskamp S. (Newbury Park, CA: Sage; ), 31–67.
    1. Davranche K., Casini L., Arnal P. J., Rupp T., Perrey S., Verges S. (2016). Cognitive functions and cerebral oxygenation changes during acute and prolonged hypoxic exposure. Physiol. Behav. 164, 189–197. 10.1016/j.physbeh.2016.06.001, PMID:
    1. De Bels D., Pierrakos C., Bruneteau A., Reul F., Crevecoeur Q., Marrone N., et al. . (2019). Variation of cognitive function during a short stay at hypobaric hypoxia chamber (altitude: 3842 M). Front. Physiol. 10:806. 10.3389/fphys.2019.00806, PMID:
    1. Evans W. O., Witt N. F. (1966). The interaction of high altitude and psychotropic drug action. Psychopharmacologia 10, 184–188. 10.1007/BF00455979, PMID:
    1. Fletcher D., Sarkar M. (2013). Psychological resilience. Eur. Psychol. 18, 12–23. 10.1027/1016-9040/a000124
    1. Harris G. A., Cleland J., Collie A., McCrory P. (2009). Cognitive assessment of a trekking expedition to 5100 m: a comparison of computerized and written testing methods. Wilderness Environ. Med. 20, 261–268. 10.1580/08-WEME-OR-261R.1, PMID:
    1. Heinrich E. C., Djokic M. A., Gilbertson D., DeYoung P. N., Bosompra N. O., Wu L., et al. . (2019). Cognitive function and mood at high altitude following acclimatization and use of supplemental oxygen and adaptive servoventilation sleep treatments. PLoS One 14:e0217089. 10.1371/journal.pone.0217089, PMID:
    1. Hornbein T. F., Townes B. D., Schoene R. B., Sutton J. R., Houston C. S. (1989). The cost to the central nervous system of climbing to extremely high altitude. N. Engl. J. Med. 21, 1714–1719. 10.1056/NEJM198912213212505, PMID:
    1. Hoyer W. J., Stawski R. S., Wasylyshyn C., Verhaeghen P. (2004). Adult age and digit symbol substitution performance: a meta-analysis. Psychol. Aging 19, 211–214. 10.1037/0882-7974.19.1.211, PMID:
    1. Hu S. L., Xiong W., Dai Z. Q., Zhao H. L., Feng H. (2016). Cognitive changes during prolonged stay at high altitude and its correlation with C-reactive protein. PLoS One 11:e0146290. 10.1371/journal.pone.0146290, PMID:
    1. Jung M., Zou L., Yu J. J., Ryu S., Kong Z., Yang L., et al. . (2020). Does exercise have a protective effect on cognitive function under hypoxia? A systematic review with meta-analysis. J. Sport Health Sci. 9, 562–577. 10.1016/j.jshs.2020.04.004, PMID:
    1. Lejuez C. W., Read J. P., Kahler C. W., Richards J. B., Ramsey S. E., Stuart G. L., et al. . (2002). Evaluation of a behavioral measure of risk taking: the balloon analogue risk task (BART). J. Exp. Psychol. Appl. 8, 75–84. 10.1037/1076-898X.8.2.75, PMID:
    1. Li X. Y., Wu X. Y., Fu C., Shen X. F., Yang C. B., Wu Y. H. (2000). Effects of acute exposure to mild or moderate hypoxia on human psychomotor performance and visual-reaction time. Space Med. Med. Eng. 13, 235–239. PMID:
    1. Loprinzi P. D., Matalgah A., Crawford L., Yu J. J., Kong Z., Wang B., et al. . (2019). Effects of acute normobaric hypoxia on memory interference. Brain Sci. 9:323. 10.3390/brainsci9110323, PMID:
    1. Luks A. M., Auerbach P. S., Freer L., Grissom C. K., Keyes L. E., McIntosh S. E., et al. . (2019). Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 update. Wilderness Environ. Med. 30, S3–S18. 10.1016/j.wem.2019.04.006, PMID:
    1. McMorris T., Hale B. J., Barwood M., Costello J., Corbett J. (2017). Corrigendum to “Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis.” Neurosci. Biobehav. Rev. 74, 225-232. Neurosci. Biobehav. Rev. 98:333. 10.1016/j.neubiorev.2019.01.017, PMID:
    1. Monasterio M. E. (2005). Accident and fatality characteristics in a population of mountain climbers in New Zealand. N. Z. Med. J. 118:U1249. PMID:
    1. Morin C. M., Belleville G., Bélanger L., Ivers H. (2011). The insomnia severity index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 34, 601–608. 10.1093/sleep/34.5.601, PMID:
    1. Neuhaus C., Hinkelbein J. (2014). Cognitive responses to hypobaric hypoxia: implications for aviation training. Psychol. Res. Behav. Manag. 7, 297–302. 10.2147/PRBM.S51844, PMID:
    1. Paralikar S. J., Paralikar J. H. (2010). High-altitude medicine. Indian J. Occup. Environ. Med. 14, 6–12. 10.4103/0019-5278.64608, PMID:
    1. Pavlicek V., Schirlo C., Nebel A., Regard M., Koller E. A., Brugger P. (2005). Cognitive and emotional processing at high altitude. Aviat. Space Environ. Med. 76, 28–33. PMID:
    1. Pedrabissi L., Santinello M. (1989). STAI State-Trait Anxiety Inventory Forma Y: Manuale. Organizzazioni Speciali, Firenze, Edizione italiana: Luigi Pedrabissi e Massimo Santinello, Giunti OS.
    1. Pighin S., Bonini N., Hadjichristidis C., Schena F., Savadori L. (2020). Decision making under stress: mild hypoxia leads to increased risk-taking. Stress 23, 290–297. 10.1080/10253890.2019.1680634, PMID:
    1. Pun M., Hartmann S. E., Furian M., Dyck A. M., Muralt L., Lichtblau M., et al. . (2018). Effect of acute, subacute, and repeated exposure to high altitude (5050 m) on psychomotor vigilance. Front. Physiol. 9:677. 10.3389/fphys.2018.00677, PMID:
    1. Richalet J. P. (2016). Physiological and clinical implications of adrenergic pathways at high altitude. Adv. Exp. Med. Biol. 903, 343–356. 10.1007/978-1-4899-7678-9_23, PMID:
    1. Roach E. B., Bleiberg J., Lathan C. E., Wolpert L., Tsao J. W., Roach R. C. (2014). AltitudeOmics: decreased reaction time after high altitude cognitive testing is a sensitive metric of hypoxic impairment. Neuroreport 25, 814–818. 10.1097/WNR.0000000000000169, PMID:
    1. Roach R. C., Hackett P. H., Oelz O., Bärtsch P., Luks A. M., MacInnis M. J., et al. . (2018). The 2018 Lake Louise Acute Mountain sickness score. High Alt. Med. Biol. 19, 4–6. 10.1089/ham.2017.0164, PMID:
    1. Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., Jacobs G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
    1. Taylor A. (2011). High-altitude illnesses: physiology, risk factors, prevention, and treatment. Rambam Maimonides Med. J. 2:e0022. 10.5041/RMMJ.10022, PMID:
    1. Thomas R. J., Tamisier R., Boucher J., Kotlar Y., Vigneault K., Weiss J. W., et al. . (2007). Nocturnal hypoxia exposure with simulated altitude for 14 days does not significantly alter working memory or vigilance in humans. Sleep 30, 1195–1203. 10.1093/sleep/30.9.1195, PMID:
    1. van Alem A. P., de Vos R., Schmand B., Koster R. W. (2004). Cognitive impairment in survivors of out-of-hospital cardiac arrest. Am. Heart J. 148, 416–421. 10.1016/j.ahj.2004.01.031, PMID:
    1. Wagnild G. (2009). The Resilience Scale User’s Guide for the US Englishversion of the Resilience Scale and the 14-Item Resilience Scale (RS-14). Worden, MT: Resilience Center.
    1. Wagnild G. M., Young H. M. (1993). Development and psychometric evaluation of the resilience scale. J. Nurs. Meas. 1, 165–178. PMID:
    1. Walsh J. J., Drouin P. J., King T. J., D'Urzo K. A., Tschakovsky M. E., Cheung S. S., et al. . (2020). Acute aerobic exercise impairs aspects of cognitive function at high altitude. Physiol. Behav. 223:112979. 10.1016/j.physbeh.2020.112979, PMID:
    1. Wang J., Ke T., Zhang X., Chen Y., Liu M., Chen J., et al. . (2013). Effects of acetazolamide on cognitive performance during high-altitude exposure. Neurotoxicol. Teratol. 35, 28–33. 10.1016/j.ntt.2012.12.003, PMID:
    1. Wechsler D. (2008). Wechsler Adult Intelligence Scale: WAIS-IV; Technical and Interpretive Manual. San Antonio, Tex: Pearson.
    1. Zigmond A. S., Snaith R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67, 361–370. 10.1111/j.1600-0447.1983.tb09716.x

Source: PubMed

3
Abonnieren