Extracorporeal cell therapy of septic shock patients with donor granulocytes: a pilot study

Jens Altrichter, Martin Sauer, Katharina Kaftan, Thomas Birken, Doris Gloger, Martin Gloger, Jörg Henschel, Heiko Hickstein, Ernst Klar, Sebastian Koball, Annette Pertschy, Gabriele Nöldge-Schomburg, Dierk A Vagts, Steffen R Mitzner, Jens Altrichter, Martin Sauer, Katharina Kaftan, Thomas Birken, Doris Gloger, Martin Gloger, Jörg Henschel, Heiko Hickstein, Ernst Klar, Sebastian Koball, Annette Pertschy, Gabriele Nöldge-Schomburg, Dierk A Vagts, Steffen R Mitzner

Abstract

Introduction: Neutrophil granulocytes are the first defense line in bacterial infections. However, granulocytes are also responsible for severe local tissue impairment. In order to use donor granulocytes, but at the same time to avoid local side effects, we developed an extracorporeal immune support system. This first-in-man study investigated whether an extracorporeal plasma treatment with a granulocyte bioreactor is tolerable in patients with septic shock. A further intention was to find suitable efficacy end-points for subsequent controlled trials.

Methods: The trial was conducted as a prospective uncontrolled clinical phase I/II study with 28-day follow-up at three university hospital intensive care units. Ten consecutive patients (five men, five women, mean age 60.3 ± 13.9 standard deviation (SD) years) with septic shock with mean ICU entrance scores of Acute Physiology and Chronic Health Evaluation (APACHE) II of 29.9 ± 7.2 and of Simplified Acute Physiology Score (SAPS) II of 66.2 ± 19.5 were treated twice within 72 hours for a mean of 342 ± 64 minutes/treatment with an extracorporeal bioreactor containing 1.41 ± 0.43 × 10E10 granulocytes from healthy donors. On average, 9.8 ± 2.3 liters separated plasma were treated by the therapeutic donor cells. Patients were followed up for 28 days.

Results: Tolerance and technical safety during treatment, single organ functions pre/post treatment, and hospital survival were monitored. The extracorporeal treatments were well tolerated. During the treatments, the bacterial endotoxin concentration showed significant reduction. Furthermore, noradrenaline dosage could be significantly reduced while mean arterial pressure was stable. Also, C-reactive protein, procalcitonin, and human leukocyte antigen DR (HLA-DR) showed significant improvement. Four patients died in the hospital on days 6, 9, 18 and 40. Six patients could be discharged.

Conclusions: The extracorporeal treatment with donor granulocytes appeared to be well tolerated and showed promising efficacy results, encouraging further studies.

Trial registration: ClinicalTrials.gov Identifier: NCT00818597.

Figures

Figure 1
Figure 1
Schematic view of the study flow.
Figure 2
Figure 2
Schematic drawing of the extracorporeal treatment. Plasma is separated from blood, transferred to the cell-compartment, and then returned to the patient.
Figure 3
Figure 3
Box plots of data describing the time course of C-reactive protein. Significant changes (P < 0.05) vs. inclusion day (indicated by *) and vs. Day 1 (§) were observed.
Figure 4
Figure 4
Box plots of data describing the time course of procalcitonin. Significant changes (P < 0.05) vs. inclusion day (indicated by *) and vs. Day 1 (§) were observed.
Figure 5
Figure 5
Box plots of data describing the time course of HLA-DR expression on CD14 positive monocytes. Significant changes (P < 0.05) vs. inclusion day (indicated by *) and vs. Day 1 (§) were observed.
Figure 6
Figure 6
Box plots of data describing the time course of total daily noradrenaline dosage. Significant changes (P < 0.05) vs. inclusion day (indicated by *) and vs. Day 1 (§) were observed.

References

    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002.
    1. Karzai W, Cui X, Heinicke N, Niemann C, Gerstenberger EP, Correa R, Banks S, Mehlhorn B, Bloos F, Reinhart K, Eichacker. Neutrophil stimulation with granulocyte colony-stimulating factor worsens ventilator-induced lung injury and mortality in rats. Anesthesiology. 2005;103:996–1005. doi: 10.1097/00000542-200511000-00014.
    1. Hoesel LM, Neff TA, Neff SB, Younger JG, Olle EW, Gao H, Pianko MJ, Bernacki KD, Sarma JV, Ward PA. Harmful and protective roles of neutrophils in sepsis. Shock. 2005;24:40–47. doi: 10.1097/01.shk.0000170353.80318.d5.
    1. Scholz M, Cinatl J, Schädel-Höpfner M, Windolf J. Neutrophils and the blood-brain barrier dysfunction after trauma. Med Res Rev. 2007;27:401–416. doi: 10.1002/med.20064.
    1. Alves-Filho JC, de Freitas A, Spiller F, Souto FO, Cunha FQ. The role of neutrophils in severe sepsis. Shock. 2008;30:3–9. doi: 10.1097/SHK.0b013e3181818466.
    1. Caille V, Chiche JD, Nciri N, Berton C, Gibot S, Boval B, Payen D, Mira JP, Mebazaa A. Histocompatibility leukocyte antigen-D related expression is specifically altered and predicts mortality in septic shock but not in other causes of shock. Shock. 2004;22:521–526. doi: 10.1097/01.shk.0000143410.63698.57.
    1. Kaufmann I, Hoelzl A, Schliephake F, Hummel T, Chouker A, Peter K, Thiel M. Polymorphonuclear leukocyte dysfunction syndrome in patients with increasing sepsis severity. Shock. 2006;26:254–261. doi: 10.1097/01.shk.0000223131.64512.7a.
    1. Carr R, Modi N, Dore C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev. 2003. p. CD003066.
    1. Napolitano LM. Immune stimulation in sepsis: to be or not to be? Chest. 2005;127:1882–1885. doi: 10.1378/chest.127.6.1882.
    1. Murphey ED, Sherwood ER. Bacterial clearance and mortality are not improved by a combination of IL-10 neutralization and IFN-gamma administration in a murine model of post-CLP immunosuppression. Shock. 2006;26:417–424. doi: 10.1097/01.shk.0000226343.70904.4f.
    1. Mohan P, Brocklehurst P. Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropaenia. Cochrane Database Syst Rev. 2003. p. CD003956.
    1. Stanworth SJ, Massey E, Hyde C, Brunskill S, Lucas G, Navarrete C, Marks DI. Granulocyte transfusions for treating infections in patients with neutropenia or neutrophil dysfunction. Cochrane Database Syst Rev. 2005. p. CD005339.
    1. Safdar A, Hanna HA, Boktour M, Kontoyiannis DP, Hachem R, Lichtiger B, Freireich EJ, Raad II. Impact of high-dose granulocyte transfusions in patients with cancer with candidemia: retrospective case-control analysis of 491 episodes of Candida species bloodstream infections. Cancer. 2004;101:2859–2865. doi: 10.1002/cncr.20710.
    1. Mitzner SR, Freytag J, Sauer M, Kleinfeldt T, Altrichter J, Klöhr S, Koball S, Stange J, Ringel B, Nebe B, Schmidt H, Podbielski A, Noeldge-Schomburg G, Schmidt R. Use of human preconditioned phagocytes for extracorporeal immune support: introduction of a concept. Ther Apher. 2001;5:423–432. doi: 10.1046/j.1526-0968.2001.00378.x.
    1. Sauer M, Altrichter A, Kreutzer HJ, Lögters T, Scholz M, Nöldge-Schomburg G, Schmidt R, Mitzner SR. Extracorporeal cell therapy with granulocytes in a pig-model of Gram-positive sepsis. Crit Care Med. 2009;37:606–613. doi: 10.1097/CCM.0b013e318194aa77.
    1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–874. doi: 10.1097/00003246-199206000-00025.
    1. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709. doi: 10.1056/NEJM200103083441001.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Lemeshow S, Le Gall JR. Modeling the severity of illness of ICU patients. A systems update. JAMA. 1994;272:1049–1055. doi: 10.1001/jama.272.13.1049.
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–2963. doi: 10.1001/jama.270.24.2957. (Erratum in: JAMA 1994, 271:1321)
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Med. 2008;34:17–60. doi: 10.1007/s00134-007-0934-2.
    1. Kreymann KG, de Heer G, Nierhaus A, Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007;35:2677–2685. doi: 10.1097/01.CCM.0000295263.12774.97.
    1. Bochud PY, Calandra T. Pathogenesis of sepsis: new concepts and implications for future treatment. BMJ. 2003;326:262–266. doi: 10.1136/bmj.326.7383.262.
    1. Nasraway SA. The problems and challenges of immunotherapy in sepsis. Chest. 2003;123:451S–459S. doi: 10.1378/chest.123.5_suppl.451S.
    1. Ronco C, Inguaggiato P, D'Intini V, Cole L, Bellomo R, Poulin S, Bordoni V, Crepaldi C, Gastaldon F, Brendolan A, Trairak P, Khajohn T. The role of extracorporeal therapies in sepsis. J Nephrol. 2003;16:S34–S41.
    1. Honore PM, Joannes-Boyau O, Boer W, Collin V. High-volume hemofiltration in sepsis and SIRS: current concepts and future prospects. Blood Purif. 2009;28:1–11. doi: 10.1159/000210031.
    1. Morgera S, Haase M, Kuss T, Vargas-Hein O, Zuckermann-Becker H, Melzer C, Krieg H, Wegner B, Bellomo R, Neumayer HH. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med. 2006;34:2099–2104. doi: 10.1097/01.CCM.0000229147.50592.F9.
    1. Rimmelé T, Assadi A, Cattenoz M, Desebbe O, Lambert C, Boselli E, Goudable J, Etienne J, Chassard D, Bricca G, Allaouchiche B. High-volume haemofiltration with a new haemofiltration membrane having enhanced adsorption properties in septic pigs. Nephrol Dial Transplant. 2009;24:421–427.
    1. Ronco C, Brendolan A, Lonnemann G, Bellomo R, Piccinni P, Digito A, Dan M, Irone M, La Greca G, Inguaggiato P, Maggiore U, De Nitti C, Wratten ML, Ricci Z, Tetta C. A pilot study of coupled plasma filtration with adsorption in septic shock. Crit Care Med. 2002;30:1250–1255. doi: 10.1097/00003246-200206000-00015.
    1. Kellum JA, Song M, Venkataraman R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-kappaB DNA binding, and improves short-term survival in lethal endotoxemia. Crit Care Med. 2004;32:801–805. doi: 10.1097/01.CCM.0000114997.39857.69.
    1. Bellomo R, Honoré PM, Matson J, Ronco C, Winchester J. Extracorporeal blood treatment (EBT) methods in SIRS/Sepsis. Int J Artif Organs. 2005;28:450–458.
    1. Peng Z, Singbartl K, Simon P, Rimmelé T, Bishop J, Clermont G, Kellum JA. Blood purification in sepsis: a new paradigm. Contrib Nephrol. 2010;165:322–328. full_text.
    1. Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002;28:1434–1439. doi: 10.1007/s00134-002-1410-7.
    1. Demetriou AA, Brown RS Jr, Busuttil RW, Fair J, McGuire BM, Rosenthal P, Am Esch JS, Lerut J, Nyberg SL, Salizzoni M, Fagan EA, de Hemptinne B, Broelsch CE, Muraca M, Salmeron JM, Rabkin JM, Metselaar HJ, Pratt D, De La Mata M, McChesney LP, Everson GT, Lavin PT, Stevens AC, Pitkin Z, Solomon BA. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–667. doi: 10.1097/01.sla.0000124298.74199.e5.
    1. Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK, Szerlip HM, Ye J, Paganini EP, Dworkin L, Finkel KW, Kraus MA, Humes HD. Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol. 2008;19:1034–1040. doi: 10.1681/ASN.2007080895.
    1. Stange J, Mitzner S. Cell sources for bioartificial liver support. Int J Artif Organs. 1996;19:14–17.
    1. Taylor RW, O'Brien J, Trottier SJ, Manganaro L, Cytron M, Lesko MF, Arnzen K, Cappadoro C, Fu M, Plisco MS, Sadaka FG, Veremakis C. Red blood cell transfusions and nosocomial infections in critically ill patients. Crit Care Med. 2006;34:2302–2308. doi: 10.1097/01.CCM.0000234034.51040.7F.
    1. Blajchman MA. The clinical benefits of the leukoreduction of blood products. J Traum. 2006;60:S83–S90. doi: 10.1097/01.ta.0000199537.09201.7b.
    1. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten H, Ronco C, Kellum JA. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators. Intensive Care Med. 2007;33:1563–1570. doi: 10.1007/s00134-007-0754-4.
    1. Dünser MW, Ruokonen E, Pettilä V, Ulmer H, Torgersen C, Schmittinger CA, Jakob S, Takala J. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13:R181.
    1. Mitzner S, Klammt S, Stange J, Schmidt R. Albumin regeneration in liver support - comparison of different methods. Therapeutic Apheresis and Dialysis. 2006;10:108–117. doi: 10.1111/j.1744-9987.2006.00351.x.

Source: PubMed

3
Abonnieren