Effects of propofol and sevoflurane on hepatic blood flow: a randomized controlled trial

Jurgen van Limmen, Piet Wyffels, Frederik Berrevoet, Aude Vanlander, Laurent Coeman, Patrick Wouters, Stefan De Hert, Luc De Baerdemaeker, Jurgen van Limmen, Piet Wyffels, Frederik Berrevoet, Aude Vanlander, Laurent Coeman, Patrick Wouters, Stefan De Hert, Luc De Baerdemaeker

Abstract

Background: Maintaining adequate perioperative hepatic blood flow (HBF) supply is essential for preservation of postoperative normal liver function. Propofol and sevoflurane affect arterial and portal HBF. Previous studies have suggested that propofol increases total HBF, primarily by increasing portal HBF, while sevoflurane has only minimal effect on total HBF. Primary objective was to compare the effect of propofol (group P) and sevoflurane (group S) on arterial, portal and total HBF and on the caval and portal vein pressure during major abdominal surgery. The study was performed in patients undergoing pancreaticoduodenectomy because - in contrast to hepatic surgical procedures - this is a standardized surgical procedure without potential anticipated severe hemodynamic disturbances, and it allows direct access to the hepatic blood vessels.

Methods: Patients were randomized according to the type of anesthetic drug used. For both groups, Bispectral Index (BIS) monitoring was used to monitor depth of anesthesia. All patients received goal-directed hemodynamic therapy (GDHT) guided by the transpulmonary thermodilution technique. Hemodynamic data were measured, recorded and guided by Pulsioflex™. Arterial, portal and total HBF were measured directly, using ultrasound transit time flow measurements (TTFM) and were related to hemodynamic variables.

Results: Eighteen patients were included. There was no significant difference between groups in arterial, portal and total HBF. As a result of the GDHT, pre-set hemodynamic targets were obtained in both groups, but MAP was significantly lower in group S (p = 0.01). In order to obtain these pre-set hemodynamic targets, group S necessitated a significantly higher need for vasopressor support (p < 0.01).

Conclusion: Hepatic blood flow was similar under a propofol-based and a sevoflurane-based anesthetic regimen. Related to the application of GDHT, pre-set hemodynamic goals were maintained in both groups, but sevoflurane-anaesthetized patients had a significantly higher need for vasopressor support.

Trial registration: Study protocol number is AGO/2017/002 - EC/2017/0164. EudraCT number is 2017-000071-90. Clin.trail.gov, NCT03772106 , Registered 4/12/2018, retrospective registered.

Keywords: Liver circulation; Propofol; Sevoflurane.

Conflict of interest statement

JVL received 50 vials of propolipid (Fresenius-Kabi, Schelle, Belgium) without any restrictions nor obligations.

Figures

Fig. 1
Fig. 1
CONSORT. CONSORT flow diagram
Fig. 2
Fig. 2
a: Maintenance of hemodynamic targets. Efficacy of goal-directed hemodynamic therapy during procedure: percentage of time within hemodynamic goals as defined in the departmental protocol between propofol titrated-patients (group P) and sevoflurane-titrated patients (group S). * P < 0.05. b: Noradrenaline infusion. Noradrenaline infusion related to observation periods

References

    1. Kin Y, Nimura Y, Hayakawa N, Kamiya J, Kondo S, Nagino M, et al. Doppler analysis of hepatic blood flow predicts liver dysfunction after major hepatectomy. World J Surg. 1994;18:143–149. doi: 10.1007/BF00348207.
    1. Pratschke S, Meimarakis G, Mayr S, Graeb C, Rentsch M, Zachoval R, et al. Arterial blood flow predicts graft survival in liver transplant patients. Liver Transpl. 2011;17:436–445. doi: 10.1002/lt.22248.
    1. Lominchar PL, Orue-Echebarria MI, Martín L, Lisbona CJ, Salcedo MM, Olmedilla L, et al. Hepatic flow is an intraoperative predictor of early allograft dysfunction in whole-graft deceased donor liver transplantation: an observational cohort study. World J Hepatol. 2019;11:689–700. doi: 10.4254/wjh.v11.i9.689.
    1. Kelly DM, Shiba H, Nakagawa S, Irefin S, Eghtesad B, Quintini C, et al. Hepatic blood flow plays an important role in ischemia-reperfusion injury. Liver Transpl. 2011;17:1448–1456. doi: 10.1002/lt.22424.
    1. Spitzer AL, Dick AAS, Bakthavatsalam R, Halldorson JB, Salvalaggio PR, Reyes JD, et al. Intraoperative portal vein blood flow predicts allograft and patient survival following liver transplantation. Hpb. 2010;12:166–173. doi: 10.1111/j.1477-2574.2009.00137.x.
    1. Marambio A, Tuñon JMC, Gómez LMM, Martínez JMA, Bellido CB, Artacho GS, et al. Intraoperative portal vein flow > 123 mL/min per 100 g predicts a better survival of patients after liver transplantation. Transplant Proc. 2018;50:3582–3586. doi: 10.1016/j.transproceed.2018.06.032.
    1. Gelman S. General anesthesia and hepatic circulation. Can J Physiol Pharmacol. 1987;65:1762–1779. doi: 10.1139/y87-276.
    1. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol. 1985;12. 10.1152/ajpgi.1985.249.5.g549.
    1. Parks DA, Jacobson ED. Physiology of the splanchnic circulation. Arch Intern Med. 1985;145:1278–1281. doi: 10.1001/archinte.1985.00360070158027.
    1. Gelman S, Mushlin PS. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. Anesthesiology. 2004;100:434–439. doi: 10.1097/00000542-200402000-00036.
    1. Richardson PDI, Withrington P. Physiological regulation of the hepatic circulation. Annu Rev Physiol. 1982;44:57–69. doi: 10.1146/annurev.ph.44.030182.000421.
    1. Nakamoto S, Tatara T, Okamoto T, Hirose M. Complex effects of continuous vasopressor infusion on fluid responsiveness during liver resection: a randomised controlled trial. Eur J Anaesthesiol. 2019;36:667–675. doi: 10.1097/EJA.0000000000001046.
    1. Wouters PF, Van de Velde MA, Marcus MAE, Deruyter HA, Van Aken H. Hemodynamic changes during induction of anesthesia with Eltanolone and Propofol in dogs. Anesth Analg. 1995;81:125–131. doi: 10.1097/00000539-199507000-00025.
    1. Carmichael FJ, Crawford MW, Khayyam N, Saldivia V. Effect of propofol infusion on splanchnic hemodynamics and liver oxygen consumption in the rat: a dose-response study. Anesthesiology. 1993;79:1051–1060. doi: 10.1097/00000542-199311000-00024.
    1. Zhu T, Pang Q, McCluskey SA, Luo C. Effect of propofol on hepatic blood flow and oxygen balance in rabbits. Can J Anesth. 2008;55:364–370. doi: 10.1007/BF03021492.
    1. Meierhenrich R, Gauss A, Mühling B, Bracht H, Radermacher P, Georgieff M, et al. The effect of propofol and desflurane anaesthesia on human hepatic blood flow: a pilot study. Anaesthesia. 2010;65:1085–1093. doi: 10.1111/j.1365-2044.2010.06504.x.
    1. Bernard JM, Doursout MF, Wouters P, Hartley CJ, Merin RG, Chelly JE. Effects of sevoflurane and isoflurane on hepatic circulation in the chronically instrumented dog. Anesthesiology. 1992;77:541–545. doi: 10.1097/00000542-199209000-00021.
    1. Frink EJ, Morgan SE, Coetzee A, Conzen PF, Brown BR. The effects of sevoflurane, halothane, enflurane, and isoflurane on hepatic blood flow and oxygenation in chronically instrumented greyhound dogs. Anesthesiology. 1992;76:85–90. doi: 10.1097/00000542-199201000-00013.
    1. Beldi G, Bosshard A, Hess OM, Althaus U, Walpoth BH. Transit time flow measurement: experimental validation and comparison of three different systems. Ann Thorac Surg. 2000;70:212–217. doi: 10.1016/S0003-4975(00)01246-7.
    1. Aleksic M, Heckenkamp J, Gawenda M, Brunkwall J. Pulsatility index determination by flowmeter measurement: a new indicator for vascular resistance? Eur Surg Res. 2004;36:345–349. doi: 10.1159/000081642.
    1. Sand Bown L, Ricksten SE, Houltz E, Einarsson H, Söndergaard S, Rizell M, et al. Vasopressin-induced changes in splanchnic blood flow and hepatic and portal venous pressures in liver resection. Acta Anaesthesiol Scand. 2016;60:607–615. doi: 10.1111/aas.12684.
    1. Erdfelder E, FAul F, Buchner A, Lang AG. Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149.
    1. Team R. R-studio User’s manual. 2018.
    1. Burra P, Burroughs A, Graziadei I, Pirenne J, Valdecasas JC, Muiesan P, et al. EASL clinical practice guidelines: liver transplantation. J Hepatol. 2016;64:433–485. doi: 10.1016/j.jhep.2015.10.006.
    1. Beck-Schimmer B, Breitenstein S, Bonvini JM, Lesurtel M, Ganter M, Weber A, et al. Protection of pharmacological postconditioning in liver surgery: results of a prospective randomized controlled trial. Ann Surg. 2012;256:837–845. doi: 10.1097/SLA.0b013e318272df7c.
    1. Beck-Schimmer B, Bonvini JM, Schadde E, Dutkowski P, Oberkofler CE, Lesurtel M, et al. Conditioning with sevoflurane in liver transplantation: results of a multicenter randomized controlled trial. Transplantation. 2015;99:1606–1612. doi: 10.1097/TP.0000000000000644.
    1. Runciman WB, Mather LE, Selby DG. Cardiovascular effects of propofol and of thiopentone anaesthesia in the sheep. Br J Anaesth. 1990;65:353–359. doi: 10.1093/bja/65.3.353.
    1. Takeda S, Sato N, Tomaru T. Haemodynamic and splanchnic organ blood flow responses during sevoflurane-induced hypotension in dogs. Eur J Anaesthesiol. 2002;19:442–446. doi: 10.1097/00003643-200206000-00007.
    1. Kanaya N, Nakayama M, Fujita S, Namiki A. Comparison of the effects of sevoflurane, isoflurane and halothane on indocyanine green clearance. Br J Anaesth. 1995;74(2):164–7. 10.1093/bja/74.2.164.
    1. Hongo T. Sevoflurane reduced but isoflurane maintained hepatic blood flow during anesthesia in man. J Anesth. 1994;8:55–59. doi: 10.1007/BF02482756.
    1. Chow PKH, Yu WK, Soo KC, Chan STF. The measurement of liver blood flow: a review of experimental and clinical methods. J Surg Res. 2003;112:1–11. doi: 10.1016/S0022-4804(03)00127-6.
    1. Sear JW, Diedericks J, Foex P. Continuous infusions of propofol administered to dogs: effects on icg and propofol disposition. Br J Anaesth. 1994;72:451–455. doi: 10.1093/bja/72.4.451.
    1. Lange H, Stephan H, Rieke H, Kellermann M, Sonntag H, Bircher J. Hepatic and extrahepatic disposition of propofol in patients undergoing coronary bypass surgery. Br J Anaesth. 1990;64:563–570. doi: 10.1093/bja/64.5.563.
    1. Schütz W, Meierhenrich R, Träger K, Gauss A, Radermacher P, Georgieff M. Is it feasible to monitor total hepatic blood flow by use of transesophageal echography? An experimental study in pigs. Intensive Care Med. 2001;27:580–585. doi: 10.1007/s001340100859.
    1. Rasmussen A, Hjortrup A, Kirkegaard P. Intraoperative measurement of graft blood flow - a necessity in liver transplantation. Transpl Int. 1997;10:74–77. doi: 10.1111/j.1432-2277.1997.tb00541.x.
    1. Lisik W, Gontarczyk G, Kosieradzki M, Lagiewska B, Pacholczyk M, Adadyński L, et al. Intraoperative blood flow measurements in organ allografts can predict postoperative function. Transplant Proc. 2007;39:371–372. doi: 10.1016/j.transproceed.2007.01.046.
    1. Guimarães S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001;53:319–356.
    1. Turk LN, Shoemaker WC. Hepatic vascular response to norepinephrine. Am J Physiol Content. 1962;202:1175–1178. doi: 10.1152/ajplegacy.1962.202.6.1175.
    1. Hirsch LJ, Ayabe T, Glick G. Direct effects of various catecholamines on liver circulation in dogs. Am J Physiol. 1976;230:1394–1399. doi: 10.1152/ajplegacy.1976.230.5.1394.
    1. Hiltebrand LB, Koepfli E, Kimberger O, Sigurdsson GH, Brandt S. Hypotension during fluid-restricted abdominal surgery: effects of norepinephrine treatment on regional and microcirculatory blood flow in the intestinal tract. Anesthesiology. 2011;114:557–564. doi: 10.1097/ALN.0b013e31820bfc81.
    1. Hessheimer AJ, Escobar B, Muñoz J, Flores E, Gracia-Sancho J, Taurá P, et al. Somatostatin therapy protects porcine livers in small-for-size liver transplantation. Am J Transplant. 2014;14:1806–1816. doi: 10.1111/ajt.12758.
    1. Mohkam K, Darnis B, Schmitt Z, Duperret S, Ducerf C, Mabrut JY. Successful modulation of portal inflow by somatostatin in a porcine model of small-for-size syndrome. Am J Surg. 2016;212:321–326. doi: 10.1016/j.amjsurg.2016.01.043.
    1. Amin S, Werner RS, Madsen PL, Krasopoulos G, Taggart DP. Intraoperative bypass graft flow measurement with transit time Flowmetry: a clinical assessment. Ann Thorac Surg. 2018;106:532–538. doi: 10.1016/j.athoracsur.2018.02.067.

Source: PubMed

3
Abonnieren