Effects of changes in arterial pressure on organ perfusion during septic shock

Aurélie Thooft, Raphaël Favory, Diamantino Ribeiro Salgado, Fabio S Taccone, Katia Donadello, Daniel De Backer, Jacques Creteur, Jean-Louis Vincent, Aurélie Thooft, Raphaël Favory, Diamantino Ribeiro Salgado, Fabio S Taccone, Katia Donadello, Daniel De Backer, Jacques Creteur, Jean-Louis Vincent

Abstract

Introduction: Septic shock is characterized by altered tissue perfusion associated with persistent arterial hypotension. Vasopressor therapy is generally required to restore organ perfusion but the optimal mean arterial pressure (MAP) that should be targeted is uncertain. The aim of this study was to assess the effects of increasing MAP using norepinephrine (NE) on hemodynamic and metabolic variables and on microvascular reactivity in patients with septic shock.

Methods: This was a single center, prospective, interventional study conducted in the medico-surgical intensive care unit of a university hospital. Thirteen patients in septic shock for less than 48 hours who required NE administration were included. NE doses were adjusted to obtain MAPs of 65, 75, 85 and (back to) 65 mmHg. In addition to hemodynamic and metabolic variables, we measured thenar muscle oxygen saturation (StO2), using near infrared spectroscopy (NIRS), with serial vaso-occlusive tests (VOTs) on the upper arm. We also evaluated the sublingual microcirculation using sidestream dark field (SDF) imaging in 6 of the patients.

Results: Increasing NE dose was associated with an increase in cardiac output (from 6.1 to 6.7 l/min, P<0.05) and mixed venous oxygen saturation (SvO2, from 70.6 to 75.9%, P<0.05). Oxygen consumption (VO2) remained stable, but blood lactate levels decreased. There was a significant increase in the ascending slope of StO2 (from 111 to 177%/min, P<0.05) after VOTs. SDF imaging showed an increase in perfused vessel density (PVD, from 11.0 to 13.2 n/mm, P<0.05) and in microvascular flow index (MFI, from 2.4 to 2.9, P<0.05).

Conclusions: In this series of patients with septic shock, increasing MAP above 65 mmHg with NE was associated with increased cardiac output, improved microvascular function, and decreased blood lactate concentrations. The microvascular response varied among patients suggesting that individualization of blood pressure targets may be warranted.

Figures

Figure 1
Figure 1
Ascending slope in individual patients. There was a systematic response of the slope to the increase in mean arterial pressure.
Figure 2
Figure 2
Proportion of small perfused vessels in individual patients.
Figure 3
Figure 3
Microvascular flow index. Data are presented as median (interquartile range). *Significant difference at 5% level (Bonferroni correction) versus baseline.

References

    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104. doi: 10.1164/rccm.200109-016OC.
    1. Landin L, Lorente JA, Renes E, Canas P, Jorge P, Liste D. Inhibition of nitric oxide synthesis improves the vasoconstrictive effect of noradrenaline in sepsis. Chest. 1994;106:250–256. doi: 10.1378/chest.106.1.250.
    1. Leclerc J, Pu Q, Corseaux D, Haddad E, Decoene C, Bordet R, Six I, Jude B, Vallet B. A single endotoxin injection in the rabbit causes prolonged blood vessel dysfunction and a procoagulant state. Crit Care Med. 2000;28:3672–3678. doi: 10.1097/00003246-200011000-00023.
    1. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–1071. doi: 10.1007/s00134-005-2688-z.
    1. Ledoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–2732. doi: 10.1097/00003246-200008000-00007.
    1. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–786. doi: 10.1097/01.CCM.0000157788.20591.23.
    1. Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–1562. doi: 10.1007/s00134-007-0665-4.
    1. Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37:1961–1966. doi: 10.1097/CCM.0b013e3181a00a1c.
    1. Dubin A, Pozo MO, Casabella CA, Palizas F Jr, Murias G, Moseinco MC, Kanoore E, Palizas F, Estenssoro E, Ince C. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92. doi: 10.1186/cc7922.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710. doi: 10.1007/BF01709751.
    1. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol. 1994;77:2740–2747.
    1. Lima A, Bakker J. Noninvasive monitoring of peripheral perfusion. Intensive Care Med. 2005;31:1316–1326. doi: 10.1007/s00134-005-2790-2.
    1. Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33:1549–1556. doi: 10.1007/s00134-007-0739-3.
    1. Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock. 2007;27:348–353. doi: 10.1097/01.shk.0000239779.25775.e4.
    1. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9(Suppl 4):S13–S19. doi: 10.1186/cc3753.
    1. De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, Dobbe I, Ince C. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101. doi: 10.1186/cc6118.
    1. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103:1826–1831. doi: 10.1378/chest.103.6.1826.
    1. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–789. doi: 10.1056/NEJMoa0907118.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;30:S229–S234. doi: 10.1097/00003246-200205001-00010.
    1. Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36:1882–1889. doi: 10.1007/s00134-010-2013-3.

Source: PubMed

3
Abonnieren