Correlated Resting-State Functional MRI Activity of Frontostriatal, Thalamic, Temporal, and Cerebellar Brain Regions Differentiates Stroke Survivors with High Compared to Low Depressive Symptom Scores

Peter Goodin, Gemma Lamp, Rishma Vidyasagar, Alan Connelly, Stephen Rose, Bruce C V Campbell, Tamara Tse, Henry Ma, David Howells, Graeme J Hankey, Stephen Davis, Geoffrey Donnan, Leeanne M Carey, Peter Goodin, Gemma Lamp, Rishma Vidyasagar, Alan Connelly, Stephen Rose, Bruce C V Campbell, Tamara Tse, Henry Ma, David Howells, Graeme J Hankey, Stephen Davis, Geoffrey Donnan, Leeanne M Carey

Abstract

Background: One in three survivors of stroke experience poststroke depression (PSD). PSD has been linked with poorer recovery of function and cognition, yet our understanding of potential mechanisms is currently limited. Alterations in resting-state functional MRI have been investigated to a limited extent. Fluctuations in low frequency signal are reported, but it is unknown if interactions are present between the level of depressive symptom score and intrinsic brain activity in varying brain regions.

Objective: To investigate potential interaction effects between whole-brain resting-state activity and depressive symptoms in stroke survivors with low and high levels of depressive symptoms.

Methods: A cross-sectional analysis of 63 stroke survivors who were assessed at 3 months poststroke for depression, using the Montgomery-Åsberg Depression Rating Scale (MÅDRS-SIGMA), and for brain activity using fMRI. A MÅDRS-SIGMA score of >8 was classified as high depressive symptoms. Fractional amplitude of frequency fluctuations (fALFF) data across three frequency bands (broadband, i.e., ~0.01-0.08; subbands, i.e., slow-5: ~0.01-0.027 Hz, slow-4: 0.027-0.07) was examined.

Results: Of the 63 stroke survivors, 38 were classified as "low-depressive symptoms" and 25 as "high depressive symptoms." Six had a past history of depression. We found interaction effects across frequency bands in several brain regions that differentiated the two groups. The broadband analysis revealed interaction effects in the left insula and the left superior temporal lobe. The subband analysis showed contrasting fALFF response between the two groups in the left thalamus, right caudate, and left cerebellum. Across the three frequency bands, we found contrasting fALFF response in areas within the fronto-limbic-thalamic network and cerebellum.

Conclusions: We provide evidence that fALFF is sensitive to changes in poststroke depressive symptom severity and implicates frontostriatal and cerebellar regions, consistent with previous studies. The use of multiband analysis could be an effective method to examine neural correlates of depression after stroke. The START-PrePARE trial is registered with the Australian New Zealand Clinical Trial Registry, number ACTRN12610000987066.

Trial registration: ClinicalTrials.gov NCT00887328.

Conflict of interest statement

The authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Overlap of lesion locations for all participants, low depressive symptom score group, high depressive symptom score group, and overlap of lesion location for the low and high groups. For columns All, Low, and High, cooler colours indicate lower numbers of participants with overlapping lesions, and warmer colours indicate higher numbers of participants with overlapping lesions. For the Overlap column, green = low depressive symptom score group, dark blue = high depressive symptom score group, and light blue = overlap between the two groups. All brain images are shown in neurological convention.
Figure 2
Figure 2
Cluster locations showing a significant interaction effect between the low and high depressive symptom score groups with the mean cluster fALFF response plotted against the MÅDRS-SIGMA score for broadband, slow-4 band, and slow-5 band (green represents low depressive symptom score group, blue represents high depressive symptom score group, and bands along regression line represent the 95% confidence interval). (a) Broadband: left insula. (b) Broadband: left superior temporal. (c) Slow-4: left thalamus. (d) Slow-4: right caudate. (e) Slow-5: left cerebellum. In the high depressive symptom group, high response from these regions was associated with an increased depressive symptom score. The low depressive symptom group showed no significant association between these regions and depressive symptom score. All brain images are shown in neurological convention.

References

    1. Stephens S., Kenny R. A., Rowan E., et al. Neuropsychological characteristics of mild vascular cognitive impairment and dementia after stroke. International Journal of Geriatric Psychiatry. 2004;19(11):1053–1057. doi: 10.1002/gps.1209.
    1. Herrmann M., Wallesch C.-W. Depressive changes in stroke patients. Disability and Rehabilitation. 1993;15(2):55–66. doi: 10.3109/09638289309165873.
    1. Cojocaru G. R., Popa-Wagner A., Stanciulescu E. C., Babadan L., Buga A.-M. Post-stroke depression and the aging brain. Journal of Molecular Psychiatry. 2013;1(1):p. 14. doi: 10.1186/2049-9256-1-14.
    1. Hackett M. L., Pickles K. Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. International Journal of Stroke. 2014;9(8):1017–1025. doi: 10.1111/ijs.12357.
    1. Hackett M. L., Yapa C., Parag V., Anderson C. S. Frequency of depression after stroke. Stroke. 2005;36(6):1330–1340. doi: 10.1161/01.STR.0000165928.19135.35.
    1. Andrade L., Caraveo-Anduaga J. J., Berglund P., et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) surveys. International Journal of Methods in Psychiatric Research. 2003;12(1):3–21. doi: 10.1002/mpr.138.
    1. Riolo S. A., Nguyen T. A., Greden J. F., King C. A. Prevalence of depression by race/ethnicity: findings from the National Health and Nutrition Examination Survey III. American Journal of Public Health. 2005;95(6):998–1000. doi: 10.2105/AJPH.2004.047225.
    1. Robinson R. G., Jorge R. E. Post-stroke depression: a review. The American Journal of Psychiatry. 2016;173(3):221–231. doi: 10.1176/appi.ajp.2015.15030363.
    1. Pohjasvaara T., Vataja R., Leppävuori A., Kaste M., Erkinjuntti T. Depression is an independent predictor of poor long-term functional outcome post-stroke. European Journal of Neurology. 2001;8(4):315–319. doi: 10.1046/j.1468-1331.2001.00182.x.
    1. Kauhanen M. L., Korpelainen J. T., Hiltunen P., et al. Poststroke depression correlates with cognitive impairment and neurological deficits. Stroke. 1999;30(9):1875–1880. doi: 10.1161/01.STR.30.9.1875.
    1. Kimura M., Robinson R. G., Kosier J. T. Treatment of cognitive impairment after poststroke depression. Stroke. 2000;31(7):1482–1486. doi: 10.1161/01.STR.31.7.1482.
    1. Murata Y., Kimura M., Robinson R. G. Does cognitive impairment cause post-stroke depression? The American Journal of Geriatric Psychiatry. 2000;8(4):310–317. doi: 10.1097/00019442-200011000-00007.
    1. Opara J., Jaracz K. Quality of life of post–stroke patients and their caregivers. Journal of Medicine and Life. 2010;3(3):216–220.
    1. Bartoli F., Lillia N., Lax A., et al. Depression after stroke and risk of mortality: a systematic review and meta-analysis. Stroke Research and Treatment. 2013;2013:11. doi: 10.1155/2013/862978.862978
    1. Villa R. F., Ferrari F., Moretti A. Post-stroke depression: mechanisms and pharmacological treatment. Pharmacology & Therapeutics. 2018;184:131–144. doi: 10.1016/j.pharmthera.2017.11.005.
    1. Boyd L. A., Hayward K. S., Ward N. S., et al. Biomarkers of stroke recovery: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke. 2017;12(5):480–493. doi: 10.1177/1747493017714176.
    1. Bhogal S. K., Teasell R., Foley N., Speechley M. Lesion location and poststroke depression: systematic review of the methodological limitations in the literature. Stroke. 2004;35(3):794–802. doi: 10.1161/01.STR.0000117237.98749.26.
    1. Carson A. J., MacHale S., Allen K., et al. Depression after stroke and lesion location: a systematic review. The Lancet. 2000;356(9224):122–126. doi: 10.1016/S0140-6736(00)02448-X.
    1. Francis P. L., Herrmann N., Tennen G., Lanctot K. L. A brief history of poststroke depression neuroimaging. Aging Health. 2009;5(1):79–88. doi: 10.2217/1745509X.5.1.79.
    1. Wei N., Yong W., Li X., et al. Post-stroke depression and lesion location: a systematic review. Journal of Neurology. 2015;262(1):81–90. doi: 10.1007/s00415-014-7534-1.
    1. Noonan K., Carey L. M., Crewther S. G. Meta-analyses indicate associations between neuroendocrine activation, deactivation in neurotrophic and neuroimaging markers in depression after stroke. Journal of Stroke and Cerebrovascular Diseases. 2013;22(7):e124–e135. doi: 10.1016/j.jstrokecerebrovasdis.2012.09.008.
    1. Drevets W. C., Price J. L., Furey M. L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure & Function. 2008;213(1–2):93–118. doi: 10.1007/s00429-008-0189-x.
    1. Diener C., Kuehner C., Brusniak W., Ubl B., Wessa M., Flor H. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. NeuroImage. 2012;61(3):677–685. doi: 10.1016/j.neuroimage.2012.04.005.
    1. Fitzgerald P. B., Laird A. R., Maller J., Daskalakis Z. J. A meta-analytic study of changes in brain activation in depression. Human Brain Mapping. 2008;29(6):683–695. doi: 10.1002/hbm.20426.
    1. Palmer S. M., Crewther S. G., Carey L. M., The START Project Team A meta-analysis of changes in brain activity in clinical depression. Frontiers in Human Neuroscience. 2015;8, article 1045 doi: 10.3389/fnhum.2014.01045.
    1. Biswal B. B., Mennes M., Zuo X. N., et al. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences. 2010;107(10):4734–4739. doi: 10.1073/pnas.0911855107.
    1. Cordes D., Haughton V. M., Arfanakis K., et al. Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology. 2000;21(9):1636–1644.
    1. Logothetis N. K., Pauls J., Augath M., Trinath T., Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–157. doi: 10.1038/35084005.
    1. Wang Y.-F., Liu F., Long Z. L., et al. Steady-state BOLD response modulates low frequency neural oscillations. Scientific Reports. 2014;4(1, article 7376) doi: 10.1038/srep07376.
    1. Fox M. D., Raichle M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience. 2007;8(9):700–711. doi: 10.1038/nrn2201.
    1. Yu-Feng Z., Yong H., Chao-Zhe Z., et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development. 2007;29(2):83–91. doi: 10.1016/j.braindev.2006.07.002.
    1. Zou Q.-H., Zhu C. Z., Yang Y., et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods. 2008;172(1):137–141. doi: 10.1016/j.jneumeth.2008.04.012.
    1. di X., Kim E. H., Huang C. C., Tsai S. J., Lin C. P., Biswal B. B. The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity. Frontiers in Human Neuroscience. 2013;7, article 118 doi: 10.3389/fnhum.2013.00118.
    1. Zuo X.-N., di Martino A., Kelly C., et al. The oscillating brain: complex and reliable. NeuroImage. 2010;49(2):1432–1445. doi: 10.1016/j.neuroimage.2009.09.037.
    1. Zhang J. H., Badaut J., Tang J., Obenaus A., Hartman R., Pearce W. J. The vascular neural network—a new paradigm in stroke pathophysiology. Nature Reviews. Neurology. 2012;8(12):711–716. doi: 10.1038/nrneurol.2012.210.
    1. Buzsáki G., Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–1929. doi: 10.1126/science.1099745.
    1. Penttonen M., Buzsáki G. Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems. 2003;2(2):145–152. doi: 10.1016/S1472-9288(03)00007-4.
    1. Wang L., Dai W., Su Y., et al. Amplitude of low-frequency oscillations in first-episode, treatment-naive patients with major depressive disorder: a resting-state functional MRI study. PLoS One. 2012;7(10, article e48658) doi: 10.1371/journal.pone.0048658.
    1. Wang L., Kong Q., Li K., et al. Frequency-dependent changes in amplitude of low-frequency oscillations in depression: a resting-state fMRI study. Neuroscience Letters. 2016;614:105–111. doi: 10.1016/j.neulet.2016.01.012.
    1. Lassalle-Lagadec S., Sibon I., Dilharreguy B., Renou P., Fleury O., Allard M. Subacute default mode network dysfunction in the prediction of post-stroke depression severity. Radiology. 2012;264(1):218–224. doi: 10.1148/radiol.12111718.
    1. Vicentini J. E., Weiler M., Almeida S. R. M., de Campos B. M., Valler L., Li L. M. Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke. Brain Imaging and Behavior. 2017;11(6):1571–1580. doi: 10.1007/s11682-016-9605-7.
    1. Liu H., Song L., Zhang T. Changes in brain activation in stroke patients after mental practice and physical exercise: a functional MRI study. Neural Regeneration Research. 2014;9(15):1474–1484. doi: 10.4103/1673-5374.139465.
    1. Balaev V., Orlov I., Petrushevsky A., Martynova O. Functional connectivity between salience, default mode and frontoparietal networks in post-stroke depression. Journal of Affective Disorders. 2018;227:554–562. doi: 10.1016/j.jad.2017.11.044.
    1. Egorova N., Veldsman M., Cumming T., Brodtmann A. Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression. NeuroImage: Clinical. 2017;16:116–124. doi: 10.1016/j.nicl.2017.07.014.
    1. Kessler R. C., Berglund P., Demler O., Jin R., Merikangas K. R., Walters E. E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry. 2005;62(6):593–602. doi: 10.1001/archpsyc.62.6.593.
    1. Lewinsohn P. M., Solomon A., Seeley J. R., Zeiss A. Clinical implications of ‘subthreshold’ depressive symptoms. Journal of Abnormal Psychology. 2000;109(2):345–351. doi: 10.1037//0021-843x.109.2.345.
    1. Carey L. M., Crewther S., Salvado O., et al. STroke imAging pRevention and Treatment (START): a longitudinal stroke cohort study: clinical trials protocol. International Journal of Stroke. 2015;10(4):636–644. doi: 10.1111/ijs.12190.
    1. Brott T., Adams H. P., Jr., Olinger C. P., et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20(7):864–870. doi: 10.1161/01.STR.20.7.864.
    1. Williams J. B. W., Kobak K. A. Development and reliability of a structured interview guide for the Montgomery Asberg Depression Rating Scale (SIGMA) The British Journal of Psychiatry: the Journal of Mental Science. 2008;192(1):52–58. doi: 10.1192/bjp.bp.106.032532.
    1. Sagen U., Vik T. G., Moum T., Mørland T., Finset A., Dammen T. Screening for anxiety and depression after stroke: comparison of the hospital anxiety and depression scale and the Montgomery and Asberg depression rating scale. Journal of Psychosomatic Research. 2009;67(4):325–332. doi: 10.1016/j.jpsychores.2009.03.007.
    1. Goodin P., Lamp G., Vidyasagar R., McArdle D., Seitz R. J., Carey L. M. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions. NeuroImage: Clinical. 2018;18:342–355. doi: 10.1016/j.nicl.2018.02.012.
    1. Cox R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research. 1996;29(3):162–173. doi: 10.1006/cbmr.1996.0014.
    1. Avants B. B., Tustison N. J., Song G., Cook P. A., Klein A., Gee J. C. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033–2044. doi: 10.1016/j.neuroimage.2010.09.025.
    1. van der Walt S., Colbert S. C., Varoquaux G. The NumPy Array: a structure for efficient numerical computation. Computing in Science & Engineering. 2011;13(2):22–30. doi: 10.1109/MCSE.2011.37.
    1. Oliphant T. E. Python for scientific computing. Computing in Science & Engineering. 2007;9(3):10–20. doi: 10.1109/MCSE.2007.58.
    1. Gorgolewski K., Burns C. D., Madison C., et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics. 2011;5, article 13 doi: 10.3389/fninf.2011.00013.
    1. Friston K. J., Williams S., Howard R., Frackowiak R. S. J., Turner R. Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine. 1996;35(3):346–355. doi: 10.1002/mrm.1910350312.
    1. Behzadi Y., Restom K., Liau J., Liu T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37(1):90–101. doi: 10.1016/j.neuroimage.2007.04.042.
    1. Yan C.-G., Cheung B., Kelly C., et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage. 2013;76:183–201. doi: 10.1016/j.neuroimage.2013.03.004.
    1. Saad Z. S., Gotts S. J., Murphy K., et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connectivity. 2012;2(1):25–32. doi: 10.1089/brain.2012.0080.
    1. Saad Z. S., Reynolds R. C., Jo H. J., et al. Correcting brain-wide correlation differences in resting-state FMRI. Brain Connectivity. 2013;3(4):339–352. doi: 10.1089/brain.2013.0156.
    1. Eklund A., Nichols T. E., Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences. 2016;113(28):7900–7905. doi: 10.1073/pnas.1602413113.
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–289. doi: 10.1006/nimg.2001.0978.
    1. Maldjian J. A., Laurienti P. J., Burdette J. H. Precentral gyrus discrepancy in electronic versions of the Talairach atlas. NeuroImage. 2004;21(1):450–455. doi: 10.1016/j.neuroimage.2003.09.032.
    1. Maldjian J. A., Laurienti P. J., Kraft R. A., Burdette J. H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19(3):1233–1239. doi: 10.1016/S1053-8119(03)00169-1.
    1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
    1. Sliz D., Hayley S. Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Frontiers in Human Neuroscience. 2012;6, article 323 doi: 10.3389/fnhum.2012.00323.
    1. Tse T., Linden T., Churilov L., Davis S., Donnan G., Carey L. M. Longitudinal changes in activity participation in the first year post-stroke and association with depressive symptoms. Disability and Rehabilitation. 2018:1–8. doi: 10.1080/09638288.2018.1471742.
    1. Wang L., Hermens D. F., Hickie I. B., Lagopoulos J. A systematic review of resting-state functional-MRI studies in major depression. Journal of Affective Disorders. 2012;142(1–3):6–12. doi: 10.1016/j.jad.2012.04.013.
    1. Drysdale A. T., Grosenick L., Downar J., et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine. 2017;23(1):28–38. doi: 10.1038/nm.4246.
    1. Carey L. M., Seitz R. J., Parsons M., et al. Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurology. 2013;8(5):507–527. doi: 10.2217/fnl.13.39.
    1. Carter A. R., Shulman G. L., Corbetta M. Why use a connectivity-based approach to study stroke and recovery of function? NeuroImage. 2012;62(4):2271–2280. doi: 10.1016/j.neuroimage.2012.02.070.
    1. Zhang P., Xu Q., Dai J., Wang J., Zhang N., Luo Y. Dysfunction of affective network in post ischemic stroke depression: a resting-state functional magnetic resonance imaging study. BioMed Research International. 2014;2014:7. doi: 10.1155/2014/846830.846830
    1. Bonelli R. M., Cummings J. L. Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience. 2007;9(2):141–151.
    1. Beck A. T. The evolution of the cognitive model of depression and its neurobiological correlates. The American Journal of Psychiatry. 2008;165(8):969–977. doi: 10.1176/appi.ajp.2008.08050721.
    1. Gotlib I. H., Joormann J. Cognition and depression: current status and future directions. Annual Review of Clinical Psychology. 2010;6(1):285–312. doi: 10.1146/annurev.clinpsy.121208.131305.
    1. Joormann J., Gotlib I. H. Updating the contents of working memory in depression: interference from irrelevant negative material. Journal of Abnormal Psychology. 2008;117(1):182–192. doi: 10.1037/0021-843X.117.1.182.
    1. Levens S. M., Phelps E. A. Insula and orbital frontal cortex activity underlying emotion interference resolution in working memory. Journal of Cognitive Neuroscience. 2010;22(12):2790–2803. doi: 10.1162/jocn.2010.21428.
    1. Price J. L., Drevets W. C. Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences. 2012;16(1):61–71. doi: 10.1016/j.tics.2011.12.011.
    1. Henry J. D., von Hippel W., Molenberghs P., Lee T., Sachdev P. S. Clinical assessment of social cognitive function in neurological disorders. Nature Reviews Neurology. 2016;12(1):28–39. doi: 10.1038/nrneurol.2015.229.
    1. McGrath C. L., Kelley M. E., Dunlop B. W., Holtzheimer III P. E., Craighead W. E., Mayberg H. S. Pretreatment brain states identify likely nonresponse to standard treatments for depression. Biological Psychiatry. 2014;76(7):527–535. doi: 10.1016/j.biopsych.2013.12.005.
    1. Critchley H. D. Neural mechanisms of autonomic, affective, and cognitive integration. The Journal of Comparative Neurology. 2005;493(1):154–166. doi: 10.1002/cne.20749.
    1. Eckert M. A., Menon V., Walczak A., et al. At the heart of the ventral attention system: the right anterior insula. Human Brain Mapping. 2009;30(8):2530–2541. doi: 10.1002/hbm.20688.
    1. Mutschler I., Schulze-Bonhage A., Glauche V., Demandt E., Speck O., Ball T. A rapid sound-action association effect in human insular cortex. PLoS One. 2007;2(2):e259–e259. doi: 10.1371/journal.pone.0000259.
    1. Willer C., Ramsay S. C., Wise R. J. S., Friston K. J., Frackwiak R. S. J. Individual patterns of functional reorganization in the human cerebral cortex after capsular infraction. Annals of Neurology. 1993;33(2):181–189. doi: 10.1002/ana.410330208.
    1. Adrian E. D. Afferent areas in the cerebellum connected with the limbs. Brain. 1943;66(4):289–315. doi: 10.1093/brain/66.4.289.
    1. Grodd W., Hülsmann E., Lotze M., Wildgruber D., Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human Brain Mapping. 2001;13(2):55–73. doi: 10.1002/hbm.1025.
    1. Bernard J. A., Seidler R. D., Hassevoort K. M., et al. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Frontiers in Neuroanatomy. 2012;6, article 31 doi: 10.3389/fnana.2012.00031.
    1. Kim N. Y., Lee S. C., Shin J.-C., Park J. E., Kim Y. W. Voxel-based lesion symptom mapping analysis of depressive mood in patients with isolated cerebellar stroke: a pilot study. NeuroImage: Clinical. 2017;13:39–45. doi: 10.1016/j.nicl.2016.11.011.
    1. Buckner R. L., Krienen F. M., Castellanos A., Diaz J. C., Yeo B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology. 2011;106(5):2322–2345. doi: 10.1152/jn.00339.2011.
    1. Gross J., Baillet S., Barnes G. R., et al. Good practice for conducting and reporting MEG research. NeuroImage. 2013;65:349–363. doi: 10.1016/j.neuroimage.2012.10.001.
    1. Millett D. Hans Berger: from psychic energy to the EEG. Perspectives in Biology and Medicine. 2001;44(4):522–542. doi: 10.1353/pbm.2001.0070.
    1. Lindquist K. A., Wager T. D., Kober H., Bliss-Moreau E., Barrett L. F. The brain basis of emotion: a meta-analytic review. The Behavioral and Brain Sciences. 2012;35(3):121–143. doi: 10.1017/S0140525X11000446.
    1. Austin M. P., Mitchell P., Wilhelm K., et al. Cognitive function in depression: a distinct pattern of frontal impairment in melancholia? Psychological Medicine. 1999;29(1):73–85. doi: 10.1017/S0033291798007788.
    1. Diego M. A., Field T., Hernandez-Reif M. CES-D depression scores are correlated with frontal EEG alpha asymmetry. Depression and Anxiety. 2001;13(1):32–37. doi: 10.1002/1520-6394(2001)13:1<32::AID-DA5>;2-G.
    1. Drevets W. C. Prefrontal cortical-amygdalar metabolism in major depression. Annals of the New York Academy of Sciences. 1999;877:614–637. doi: 10.1111/j.1749-6632.1999.tb09292.x.
    1. Bauer D. J., Curran P. J. Probing interactions in fixed and multilevel regression: inferential and graphical techniques. Multivariate Behavioral Research. 2005;40(3):373–400. doi: 10.1207/s15327906mbr4003_5.
    1. Birn R. M., Diamond J. B., Smith M. A., Bandettini P. A. Separating respiratory-variation-related fluctuations from neuronal-activity- related fluctuations in fMRI. NeuroImage. 2006;31(4):1536–1548. doi: 10.1016/j.neuroimage.2006.02.048.
    1. Siegel J. S., Shulman G. L., Corbetta M. Measuring functional connectivity in stroke: approaches and considerations. Journal of Cerebral Blood Flow and Metabolism. 2017;37(8):2665–2678. doi: 10.1177/0271678X17709198.
    1. Küblböck M., Woletz M., Höflich A., et al. Stability of low-frequency fluctuation amplitudes in prolonged resting-state fMRI. NeuroImage. 2014;103:249–257. doi: 10.1016/j.neuroimage.2014.09.038.
    1. Siegel J. S., Snyder A. Z., Ramsey L., Shulman G. L., Corbetta M. The effects of hemodynamic lag on functional connectivity and behavior after stroke. Journal of Cerebral Blood Flow and Metabolism. 2016;36(12):2162–2176. doi: 10.1177/0271678X15614846.

Source: PubMed

3
Abonnieren