Effects of Potassium or Sodium Supplementation on Mineral Homeostasis: A Controlled Dietary Intervention Study

Jelmer K Humalda, Stanley M H Yeung, Johanna M Geleijnse, Lieke Gijsbers, Ineke J Riphagen, Ewout J Hoorn, Joris I Rotmans, Liffert Vogt, Gerjan Navis, Stephan J L Bakker, Martin H de Borst, Jelmer K Humalda, Stanley M H Yeung, Johanna M Geleijnse, Lieke Gijsbers, Ineke J Riphagen, Ewout J Hoorn, Joris I Rotmans, Liffert Vogt, Gerjan Navis, Stephan J L Bakker, Martin H de Borst

Abstract

Context: Although dietary potassium and sodium intake may influence calcium-phosphate metabolism and bone health, the effects on bone mineral parameters, including fibroblast growth factor 23 (FGF23), are unclear.

Objective: Here, we investigated the effects of potassium or sodium supplementation on bone mineral parameters.

Design, setting, participants: We performed a post hoc analysis of a dietary controlled randomized, blinded, placebo-controlled crossover trial. Prehypertensive individuals not using antihypertensive medication (n = 36) received capsules containing potassium chloride (3 g/d), sodium chloride (3 g/d), or placebo. Linear mixed-effect models were used to estimate treatment effects.

Results: Potassium supplementation increased plasma phosphate (from 1.10 ± 0.19 to 1.15 ± 0.19 mmol/L, P = 0.004), in line with an increase in tubular maximum of phosphate reabsorption (from 0.93 ± 0.21 to 1.01 ± 0.20 mmol/L, P < 0.001). FGF23 decreased (114.3 [96.8-135.0] to 108.5 [93.5-125.9] RU/mL, P = 0.01), without change in parathyroid hormone and 25-hydroxy vitamin D3. Fractional calcium excretion decreased (from 1.25 ± 0.50 to 1.11 ± 0.46 %, P = 0.03) without change in plasma calcium. Sodium supplementation decreased both plasma phosphate (from 1.10 ± 0.19 to 1.06 ± 0.21 mmol/L, P = 0.03) and FGF23 (from 114.3 [96.8-135.0] to 108.7 [92.3-128.1] RU/mL, P = 0.02). Urinary and fractional calcium excretion increased (from 4.28 ± 1.91 to 5.45 ± 2.51 mmol/24 hours, P < 0.001, and from 1.25 ± 0.50 to 1.44 ± 0.54 %, P = 0.004, respectively).

Conclusions: Potassium supplementation led to a decrease in FGF23, which was accompanied by increase in plasma phosphate and decreased calcium excretion. Sodium supplementation reduced FGF23, but this was accompanied by decrease in phosphate and increase in fractional calcium excretion. Our results indicate distinct effects of potassium and sodium intake on bone mineral parameters, including FGF23.

Clinical trial registration number: NCT01575041.

Keywords: Diet controlled clinical trial; calcium-phosphate metabolism; fibroblast growth factor 23; nutrition; potassium; sodium.

© Endocrine Society 2020.

Figures

Figure 1.
Figure 1.
Effect of a 4-week period of potassium supplementation in (A) healthy prehypertensive adults on plasma phosphate (P = 0.004), (B) 24 hours urinary phosphate excretion (P = NS), and (C) TmP/GFR (P < 0.001). The rise of phosphate levels was paralleled by (D) a decrease in FGF23 (P = 0.01), (E) without effect on PTH (P = NS) or (F) 25[OH]-vitamin D3 (P = NS). Depicted are unadjusted means and standard error, or geometric means and 95% confidence intervals for FGF23 and PTH. Abbreviations: FGF23, fibroblast growth factor 23; NS, not significant; TmP/GFR, tubular maximum reabsorption of phosphate per glomerular filtration rate.
Figure 2.
Figure 2.
Spearman’s rho correlation coefficients for changes in blood and urine parameters in response to potassium (grey shaded area, lower left-hand side) or sodium (white area, upper right-hand side) supplementation vs placebo. ***P < 0.001, **P < 0.01, *P < 0.05. Abbreviations: Ca2+, calcium; eGFR, estimated glomerular filtration rate; FEP, fractional phosphate excretion; FGF23, fibroblast growth factor 23; K+, potassium; Na+, sodium; P, phosphate; TmP/GFR, tubular maximum reabsorption of phosphate per glomerular filtration rate; vit. D, 25(OH)-vitamin D3.
Figure 3.
Figure 3.
Effect of a 4-week period of sodium supplementation in healthy prehypertensive adults (A) on plasma phosphate (P = 0.03), 24 hours urinary phosphate excretion (B) (P = NS) (C) and TmP/GFR (P = NS). The rise of phosphate levels was paralleled by (D) a decrease in FGF23 (P = 0.02), (E) without effect on PTH (P = NS) or (F) 25[OH]-vitamin D3 (P = NS). Depicted are unadjusted means and standard error, or geometric means and 95% confidence intervals for FGF23 and PTH. Abbreviations: FGF23, fibroblast growth factor 23; TmP/GFR, tubular maximum reabsorption of phosphate per glomerular filtration rate.

References

    1. Cordain L, Eaton SB, Sebastian A, et al. . Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341-354.
    1. Medina-Remón A, Kirwan R, Lamuela-Raventós RM, Estruch R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr. 2018;58(2):262-296.
    1. Hariharan D, Vellanki K, Kramer H. The western diet and chronic kidney disease. Curr Hypertens Rep. 2015;17(3):16.
    1. Movassagh EZ, Vatanparast H. Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr. 2017;8(1):1-16.
    1. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. Bmj. 2013;346:f1378.
    1. O’Donnell M, Mente A, Rangarajan S, et al. . Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371(7):612-623. doi:10.1056/NEJMoa1311889
    1. Eisenga MF, Kieneker LM, Soedamah-Muthu SS, et al. . Urinary potassium excretion, renal ammoniagenesis, and risk of graft failure and mortality in renal transplant recipients. Am J Clin Nutr. 2016;104(6):1703-1711.
    1. Mente A, O’Donnell M, Rangarajan S, et al. . Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388(10043):465-475. doi:10.1016/S0140-6736(16)30467-6
    1. Kestenbaum B, Sampson JN, Rudser KD, et al. . Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16(2):520-528.
    1. Floege J, Kim J, Ireland E, et al. ; ARO Investigators Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant. 2011;26(6):1948-1955.
    1. Yoo KD, Kang S, Choi Y, et al. . Sex, age, and the association of serum phosphorus with all-cause mortality in adults with normal kidney function. Am J Kidney Dis. 2016;67(1):79-88.
    1. Souma N, Isakova T, Lipiszko D, et al. . Fibroblast growth factor 23 and cause-specific mortality in the general population: The Northern Manhattan Study. J Clin Endocrinol Metab. 2016;101(10):3779-3786.
    1. Eisenga MF, De Jong MA, Van der Meer P, et al. . Iron deficiency, elevated erythropoietin, fibroblast growth factor 23, and mortality in the general population of the Netherlands: a cohort study. Plos Med. 2019;16(6):e1002818.
    1. Vervloet M. Renal and extrarenal effects of fibroblast growth factor 23. Nat Rev Nephrol. 2019;15(2):109-120.
    1. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4-8.
    1. Bienaimé F, Prié D, Friedlander G, Souberbielle JC. Vitamin D metabolism and activity in the parathyroid gland. Mol Cell Endocrinol. 2011;347(1–2):30-41. doi:10.1016/j.mce.2011.05.031
    1. Shimada T, Hasegawa H, Yamazaki Y, et al. . FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429-435.
    1. Koizumi M, Komaba H, Fukagawa M. Parathyroid function in chronic kidney disease: role of FGF23-Klotho axis. Contrib Nephrol. 2013;180:110-123.
    1. Blau JE, Collins MT. The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord. 2015;16(2):165-174.
    1. Bergwitz C, Jüppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91-104.
    1. Faul C, Amaral AP, Oskouei B, et al. . FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393-4408.
    1. Jimbo R, Kawakami-Mori F, Mu S, et al. . Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int. 2014;85(5):1103-1111.
    1. Silswal N, Touchberry CD, Daniel DR, et al. . FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab. 2014;307(5):E426-E436.
    1. Bouma-de Krijger A, Vervloet MG. Fibroblast growth factor 23: are we ready to use it in clinical practice? J Nephrol. 2020;(0123456789). doi:10.1007/s40620-020-00715-2
    1. Eckberg K, Kramer H, Wolf M, et al. . Impact of westernization on fibroblast growth factor 23 levels among individuals of African ancestry. Nephrol Dial Transplant. 2015;30(4):630-635.
    1. Frassetto LA, Morris RC Jr, Sellmeyer DE, Sebastian A. Adverse effects of sodium chloride on bone in the aging human population resulting from habitual consumption of typical American diets. J Nutr. 2008;138(2):419S-422S.
    1. Dawson-Hughes B, Harris SS, Palermo NJ, et al. . Potassium bicarbonate supplementation lowers bone turnover and calcium excretion in older men and women: a randomized dose-finding trial. J Bone Miner Res. 2015;30(11):2103-2111.
    1. Kong SH, Kim JH, Hong AR, Lee JH, Kim SW, Shin CS. Dietary potassium intake is beneficial to bone health in a low calcium intake population: the Korean National Health and Nutrition Examination Survey (KNHANES) (2008–2011). Osteoporos Int. 2017;28(5):1577-1585. doi:10.1007/s00198-017-3908-4
    1. Fatahi S, Namazi N, Larijani B, Azadbakht L. The association of dietary and urinary sodium with bone mineral density and risk of osteoporosis: a systematic review and meta-analysis. J Am Coll Nutr. 2018;37(6):522-532. doi:10.1080/07315724.2018.1431161
    1. Lin PH, Ginty F, Appel LJ, et al. . The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr. 2003;133(10):3130-3136.
    1. Gijsbers L, Dower JI, Mensink M, Siebelink E, Bakker SJ, Geleijnse JM. Effects of sodium and potassium supplementation on blood pressure and arterial stiffness: a fully controlled dietary intervention study. J Hum Hypertens. 2015;29(10):592-598.
    1. Ministry of Health, Welfare and Sports. NEVO-Tabel 2019. Den Haag: RIVM; 2019.
    1. de Jong MA, Petrykiv SI, Laverman GD, et al. . Effects of dapagliflozin on circulating markers of phosphate homeostasis. Clin J Am Soc Nephrol. 2019;14(1):66-73.
    1. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257-1272. doi:10.2215/CJN.09750913
    1. Kenny AP, Glen AC. Tests of phosphate reabsorption. Lancet. 1973;2(7821):158.
    1. Riphagen IJ, Gijsbers L, van Gastel MDA, et al. . Effects of potassium supplementation on markers of osmoregulation and volume regulation. J Hypertens. 2016;34(2):215-220. doi:10.1097/HJH.0000000000000786
    1. Jaeger P, Bonjour JP, Karlmark B, et al. . Influence of acute potassium loading on renal phosphate transport in the rat kidney. Am J Physiol. 1983;245(5 Pt 1):F601-F605.
    1. Sebastian A, Hernandez RE, Portale AA, Colman J, Tatsuno J, Morris RC Jr. Dietary potassium influences kidney maintenance of serum phosphorus concentration. Kidney Int. 1990;37(5):1341-1349.
    1. Rubinacci A, Benelli FD, Borgo E, Villa I. Bone as an ion exchange system: evidence for a pump-leak mechanism devoted to the maintenance of high bone K+. Am J Physiol Metab. 2000;278(1):E15-E24. doi:10.1152/ajpendo.2000.278.1.E15
    1. Gritter M, Vogt L, Yeung SMH, et al. . Rationale and design of a randomized placebo-controlled clinical trial assessing the renoprotective effects of potassium supplementation in chronic kidney disease. Nephron. 2018;140(1):48-57.
    1. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82(7):737-747.
    1. Isakova T, Xie H, Yang W, et al. ; Chronic Renal Insufficiency Cohort (CRIC) Study Group Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432-2439.
    1. Marthi A, Donovan K, Haynes R, et al. . Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: a meta-analysis. J Am Soc Nephrol. 2018;29(7):2015-2027.
    1. Stöhr R, Schuh A, Heine GH, Brandenburg V. FGF23 in cardiovascular disease: innocent bystander or active mediator? Front Endocrinol (Lausanne). 2018;9(JUL). doi:10.3389/fendo.2018.00351
    1. O’Donnell MJ, Yusuf S, Mente A, et al. . Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306(20):2229-2238.
    1. Araki S, Haneda M, Koya D, et al. . Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol. 2015;10(12):2152-2158.
    1. Filippini T, Violi F, D’Amico R, Vinceti M. The effect of potassium supplementation on blood pressure in hypertensive subjects: a systematic review and meta-analysis. Int J Cardiol. 2017;230:127-135.
    1. Lemann J Jr, Pleuss JA, Gray RW, Hoffmann RG. Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults [corrected]. Kidney Int. 1991;39(5):973-983.
    1. Moseley KF, Weaver CM, Appel L, Sebastian A, Sellmeyer DE. Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J Bone Miner Res. 2013;28(3):497-504.
    1. He FJ, Marciniak M, Carney C, et al. . Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension. 2010;55(3):681-688.
    1. Frassetto LA, Nash E, Morris RC Jr, Sebastian A. Comparative effects of potassium chloride and bicarbonate on thiazide-induced reduction in urinary calcium excretion. Kidney Int. 2000;58(2):748-752.
    1. van der Wijst J, Tutakhel OAZ, Bos C, et al. . Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol. 2018;315(1):F110-F122.
    1. Terker AS, Zhang C, McCormick JA, et al. . Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21(1):39-50.
    1. Andrukhova O, Smorodchenko A, Egerbacher M, et al. . FGF23 promotes renal calcium reabsorption through the TRPV5 channel. Embo J. 2014;33(3):229-246.
    1. Asplin JR, Donahue S, Kinder J, Coe FL. Urine calcium excretion predicts bone loss in idiopathic hypercalciuria. Kidney Int. 2006;70(8):1463-1467.
    1. Jovanovich A, Bùzková P, Chonchol M, et al. . Fibroblast growth factor 23, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Clin Endocrinol Metab. 2013;98(8):3323-3331.
    1. Rupp T, Butscheidt S, Vettorazzi E, et al. . High FGF23 levels are associated with impaired trabecular bone microarchitecture in patients with osteoporosis. Osteoporos Int. 2019;30(8):1655-1662. doi:10.1007/s00198-019-04996-7
    1. Humalda JK, Seiler-Muler S, Kwakernaak AJ, et al. . Response of fibroblast growth factor 23 to volume interventions in arterial hypertension and diabetic nephropathy. Medicine (Baltimore). 2016;95(46):e5003. doi:10.1097/MD.0000000000005003
    1. Hu JW, Wang Y, Chu C, Mu JJ. Effect of salt intervention on serum levels of fibroblast growth factor 23 (FGF23) in Chinese adults: an intervention study. Med Sci Monit. 2018;24:1948-1954.
    1. Steele TH. Increased urinary phosphate excretion following volume expansion in normal man. Metabolism. 1970;19(2):129-139. doi:10.1016/S0026-0495(70)90210-6
    1. Andrukhova O, Slavic S, Smorodchenko A, et al. . FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6(6):744-759.
    1. van Ballegooijen AJ, Rhee EP, Elmariah S, de Boer IH, Kestenbaum B. Renal clearance of mineral metabolism biomarkers. J Am Soc Nephrol. 2016;27(2):392-397.
    1. Damasio PC, Amaro CR, Cunha NB, et al. . The role of salt abuse on risk for hypercalciuria. Nutr J. 2011;10:3.
    1. Coe FL, Worcester EM, Evan AP. Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol. 2016;12(9):519-533.
    1. Robertson WG. Dietary recommendations and treatment of patients with recurrent idiopathic calcium stone disease. Urolithiasis. 2016;44(1):9-26.

Source: PubMed

3
Abonnieren