Importance of the relationship between symptoms and self-reported physical activity level in stable COPD based on the results from the SPACE study

Florin Mihaltan, Yochai Adir, Adam Antczak, Konstantinos Porpodis, Vesna Radulovic, Nuno Pires, Geeuwke Jan de Vries, Andreas Horner, Samuel De Bontridder, Yunqin Chen, Anat Shavit, Silviu Alecu, Lukasz Adamek, Florin Mihaltan, Yochai Adir, Adam Antczak, Konstantinos Porpodis, Vesna Radulovic, Nuno Pires, Geeuwke Jan de Vries, Andreas Horner, Samuel De Bontridder, Yunqin Chen, Anat Shavit, Silviu Alecu, Lukasz Adamek

Abstract

Background: The burden of symptoms and risk of exacerbations are the main drivers of the overall assessment of the Chronic Obstructive Pulmonary Disease (COPD) and the adequate treatment approaches per current Global Initiative for Chronic Obstructive Lung Disease (GOLD). Physical activity has emerged as both functional outcome and non-pharmacological intervention in COPD patients, despite the lack of standardized measures or guidelines in clinical practice. This study aimed to explore in more depth the 24-h respiratory symptoms, the physical activity level (PAL) and the relationship between these two determinants in stable COPD patients.

Methods: This was a multinational, multicenter, observational, cross-sectional study conducted in ten European countries and Israel. Dedicated questionnaires for each part of the day (morning, daytime, night) were used to assess respiratory symptoms. PAL was evaluated with self- and interview-reported tools [EVS (exercise as vital sign) and YPAS (Yale Physical Activity Survey)], and physician's judgement. Patients were stratified in ABCD groups by 2013 and 2017 GOLD editions using the questionnaires currently recommended: modified Medical Research Council dyspnea scale and COPD Assessment Test.

Results: The study enrolled 2190 patients (mean age: 66.9 years; male: 70.0%; mean % predicted FEV1: 52.6; GOLD groups II-III: 84.5%; any COPD treatment: 98.9%). Most patients (> 90%) reported symptoms in any part of the 24-h day, irrespective of COPD severity. PAL evaluations showed discordant results between patients and physicians: 32.9% of patients considered themselves completely inactive, while physicians judged 11.9% patients as inactive. By YPAS, the overall study population spent an average of 21.0 h/week performing physical activity, and 68.4% of patients were identified as sedentary. In any GOLD ABCD group, the percentage of inactive patients was high. Our study found negative, weak correlations between respiratory symptoms and self-reported PAL (p < 0.001).

Conclusions: Despite regular treatment, the majority of stable COPD patients with moderate to severe disease experienced daily variable symptoms. Physical activity level was low in this COPD cohort, and yet overestimated by physicians. With evidence indicating the negative consequences of inactivity, its adequate screening, a more active promotion and regular assessment of physical activity are urgently needed in COPD patients for better outcomes.

Trial registration: NCT03031769 , retrospectively registered, 23 Jan 2017.

Keywords: COPD; GOLD; Physical activity; SPACE; Sedentarism; Symptoms.

Conflict of interest statement

Ethics approval and consent to participate

The study and the informed consent form were approved by Institutional Review Boards or Ethics Committees in each participating country according to the local applicable legislation on observational studies. All patients provided their written informed consent before enrollment.

Consent for publication

Not applicable.

Competing interests

YC, AS, SA, AL are Employees of AstraZeneca. All the other authors have no competing interests to declare in regard to this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Prevalence of individual respiratory symptoms and their severity. a Day-time individual symptoms by severity. b Early morning and night time individual & overall symptoms and their severity
Fig. 2
Fig. 2
The distribution of physical activity level through GOLD classes by 2013 and 2017 editions. a GOLD 2013 by mMRC. b GOLD 2013 by CAT. c GOLD 2017 by mMRC. d GOLD 2017 by CAT

References

    1. Global strategy for the diagnosis, management and prevention of COPD, global initiative for chronic obstructive lung disease (GOLD) 2018. Available from: . Accessed 11 June 2018.
    1. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care. 2013;187(4):347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017. Available from: . Accessed 6 Feb 2018.
    1. Partridge MR, Karlsson N, Small IR. Patient insight into the impact of chronic obstructive pulmonary disease in the morning: an internet survey. Curr Med Res Opin. 2009;25(8):2043–2048. doi: 10.1185/03007990903103006.
    1. Kessler R, Partridge MR, Miravitlles M, Cazzola M, Vogelmeier C, Leynaud D, et al. Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur Respir J. 2011;37:264–272. doi: 10.1183/09031936.00051110.
    1. Jenkins CR, Celli B, Anderson JA, Ferguson GT, Jones PW, Vestbo J, et al. Seasonality and determinants of moderate and severe COPD exacerbations in the TORCH study. Eur Respir J. 2012;39:38–45. doi: 10.1183/09031936.00194610.
    1. Miravitlles M, Worth H, Soler Cataluña JJ, Price D, De Benedetto F, Roche N, et al. Observational study to characterise 24-hour COPD symptoms and their relationship with patient-reported outcomes: results from the ASSESS study. Respir Res. 2014;15:122. doi: 10.1186/s12931-014-0122-1.
    1. Miravitlles M, Izquierdo JL, Esquinas C, Pérez M, Calle M, López-Campos JL, et al. The variability of respiratory symptoms and associated factors in COPD. Respir Med. 2017;129:165–172. doi: 10.1016/j.rmed.2017.06.017.
    1. Roche N, Chavannes NH, Miravitlles M. COPD symptoms in the morning: impact, evaluation and management. Respir Res. 2013;14:112. doi: 10.1186/1465-9921-14-112.
    1. Tsiligianni I, Metting E, van der Molen T, Chavannes N, Kocks J. NPJ prim care Respir med. Morning and night symptoms in primary care COPD patients: a cross-sectional and longitudinal study. An UNLOCK study from the IPCRG. NPJ Prim Care Respir Med. 2016;26:16040. doi: 10.1038/npjpcrm.2016.40.
    1. van Buul AR, Kasteleyn MJ, Chavannes NH, Taube C. Association between morning symptoms and physical activity in COPD: a systematic review. Eur Respir Rev. 2017;26:143.
    1. Miravitlles M, Menezes A, López Varela MV, Casas A, Ugalde L, Ramirez-Venegas A, et al. Prevalence and impact of respiratory symptoms in a population of patients with COPD in Latin America: the LASSYC observational study. Respir Med. 2018;134:62–69. doi: 10.1016/j.rmed.2017.11.018.
    1. Gimeno-Santos E, Frei A, Steurer-Stey C, de Batlle J, Rabinovich RA, Raste Y, et al. Determinants and outcomes of physical activity in patients with COPD: a systematic review. Thorax. 2014;69:731–739. doi: 10.1136/thoraxjnl-2013-204763.
    1. Warren MJ, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L, et al. Assessment of physical activity - a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17:127–139. doi: 10.1097/HJR.0b013e32832ed875.
    1. Troosters T, Bourbeau J, Maltais F, Leidy N, Erzen D, De Sousa D, et al. Enhancing exercise tolerance and physical activity in COPD with combined pharmacological and non-pharmacological interventions: PHYSACTO randomised, placebo-controlled study design. BMJ Open. 2016;6(4):e010106. doi: 10.1136/bmjopen-2015-010106.
    1. Kantorowski Ana, Wan Emily S., Homsy Diana, Kadri Reema, Richardson Caroline R., Moy Marilyn L. Determinants and outcomes of change in physical activity in COPD. ERJ Open Research. 2018;4(3):00054–2018. doi: 10.1183/23120541.00054-2018.
    1. Watz H, Pitta F, Rochester CL, Garcia-Aymerich J, ZuWallack R, Troosters T, et al. An official European Respiratory Society statement on physical activity in COPD. Eur Respir J. 2014;44:1521–1537. doi: 10.1183/09031936.00046814.
    1. Watz H, Waschki B, Meyer T, Magnussen H. Physical activity in patients with COPD. Eur Resp J. 2009;33(2):262–272. doi: 10.1183/09031936.00024608.
    1. DePew ZS, Garofoli AC, Novotny PJ, Benzo RP. Screening for severe physical inactivity in chronic obstructive pulmonary disease: the value of simple measures and the validation of two physical activity questionnaires. Chron Respir Dis. 2013;10(1):19–27. doi: 10.1177/1479972312464243.
    1. Lewthwaite H, Effing TW, Olds T, Williams MT. Physical activity, sedentary behaviour and sleep in COPD guidelines: a systematic review. Chron Respir Dis. 2017;14(3):231–244. doi: 10.1177/1479972316687224.
    1. Divo M, Cote C, de Torres JP, Casanova C, Marin JM, Pinto-Plata V, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155–161. doi: 10.1164/rccm.201201-0034OC.
    1. Soler-Cataluna JJ, Martínez-García MA, Sánchez LS, Tordera MP, Sánchez PR, et al. Severe exacerbations and BODE index: two independent risk factors for death in male COPD patients. Respir Med. 2009;103(5):692–699. doi: 10.1016/j.rmed.2008.12.005.
    1. Lee H, Kim J, Tagmazyan K. Treatment of stable chronic obstructive pulmonary disease: the GOLD guidelines. Am Fam Physician. 2013;88(10):655–663.
    1. Bestall JC, Paul EA, Garrod R, Garnham R, Jones PW, Wedzicha JA. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999;54(7):581–586. doi: 10.1136/thx.54.7.581.
    1. Jones JW, Harding G, Berry P, Wiklund I, Chen WH, Kline Leidy N. Development and first validation of the COPD assessment test. Eur Respir J. 2009;34(3):648–654. doi: 10.1183/09031936.00102509.
    1. Mocarski M, Zaiser E, Trundell D, Make BJ, Hareendran A. Evaluation of the psychometric properties of the nighttime symptoms of COPD instrument. Int J Chron Obstruct Pulmon Dis. 2015;10:475–487.
    1. Leidy NK, Sexton CC, Jones PW, Notte SM, Monz BU, Nelsen L, et al. Measuring respiratory symptoms in clinical trials of COPD: reliability and validity of a daily diary. Thorax. 2014;69(5):443–449. doi: 10.1136/thoraxjnl-2013-204428.
    1. Stephenson JJ, Cai Q, Mocarski M, Tan H, Doshi JA, Sullivan SD. Impact and factors associated with nighttime and early morning symptoms among patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:577–586. doi: 10.2147/COPD.S76157.
    1. Coleman KJ, Ngor E, Reynolds K, Quinn VP, Koebnick C, Young DR, et al. Initial validation of an exercise “vital sign” in electronic medical records. Med Sci Sports Exerc. 2012;44(11):2071–2076. doi: 10.1249/MSS.0b013e3182630ec1.
    1. Grant RW, Schmittdiel JA, Neugebauer RS, Uratsu CS, Sternfeld B. Exercise as a vital sign: a quasi-experimental analysis of a health system intervention to collect patient-reported exercise levels. J Gen Intern Med. 2014;29(2):341–348. doi: 10.1007/s11606-013-2693-9.
    1. Dipietro L, Caspersen CJ, Ostfeld AM, Nadel ER. A survey for assessing physical activity among older adults. Med Sci Sports Exerc. 1993;25(5):628–642. doi: 10.1249/00005768-199305000-00016.
    1. Donaire-Gonzales D, Gimeno-Santos E, Serra I, Roca J, Balcells E, Rodríguez E, et al. Validation of the Yale physical activity survey in chronic obstructive pulmonary disease patients. Arch Bronconeumol. 2011;47(11):552–560.
    1. De Abajo S, Larriba R, Marquez S. Validity and reliability of the Yale physical activity survey in Spanish elderly. J Sports Med Phys Fitness. 2001;41(4):479–485.
    1. Vorrink S, Kort HS, Troosters T, Lammers JW. Level of daily physical activity in individuals with COPD compared with healthy controls. Respir Res. 2011;12:33. doi: 10.1186/1465-9921-12-33.
    1. Hunt T, Madigan S, Williams MT, Olds TS. Use of time in people with chronic obstructive pulmonary disease--a systematic review. Int J Chron Obstruct Pulmon Dis. 2014;9:1377–1388. doi: 10.2147/COPD.S74298.
    1. Droga S, Good J, Buman MP, Gardiner PA, Copeland JL, Stickland MK. Physical activity and sedentary time are related to clinically relevant health outcomes among adults with obstructive lung disease. BMC Pulm Med. 2018;18(1):98. doi: 10.1186/s12890-018-0659-8.
    1. Katzmarzyk J, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. doi: 10.1249/MSS.0b013e3181930355.
    1. Hartman JE, Boezen HM, de Greef MH, Ten Hacken NH. Physical and psychosocial factors associated with physical activity in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil. 2013;94:2396–2402.e7. doi: 10.1016/j.apmr.2013.06.029.
    1. Lewthwaite H, Effing TW, Lenferink A, Olds T, Williams MT. Improving physical activity, sedentary behaviour and sleep in COPD: perspectives of people with COPD and experts via a Delphi approach. PeerJ. 2018;6:e4604. doi: 10.7717/peerj.4604.
    1. World Health Organization 2010. Global recommendations on physical activity for health. Available at . Accessed 22 Jan 2019.
    1. Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–1253. doi: 10.1016/S0140-6736(11)60749-6.
    1. Spruit MA, Pitta F, McAuley E, ZuWallack RL, Nici L. Pulmonary rehabilitation and physical activity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(8):924–933. doi: 10.1164/rccm.201505-0929CI.
    1. Polkey MI, Rabe KF. Chicken or egg: physical activity in COPD revisited. Eur Respir J. 2009;33:227–229. doi: 10.1183/09031936.00176808.
    1. Kapella MC, Larson JL, Covey MK, Alex CG. Functional performance in chronic obstructive pulmonary disease declines with time. Med Sci Sports Exerc. 2011;43(2):218–224. doi: 10.1249/MSS.0b013e3181eb6024.
    1. Alahmari AD, Patel AR, Kowlessar BS, Mackay AJ, Singh R, Wedzicha JA, et al. Daily activity during stability and exacerbation of chronic obstructive pulmonary disease. BMC Pulm Med. 2014;14:98. doi: 10.1186/1471-2466-14-98.
    1. Katajisto M, Koskela J, Lindqvist A, Kilpeläinen M, Laitinen T. Physical activity in COPD patients decreases short-acting bronchodilator use and the number of exacerbations. Respir Med. 2015;109:1320–1325. doi: 10.1016/j.rmed.2015.08.001.
    1. Sievi NA, Senn O, Brack T, Brutsche MH, Frey M, Irani S, et al. Impact of comorbidities on physical activity in COPD. Respirology. 2015;20:413–418. doi: 10.1111/resp.12456.
    1. Watz H, Troosters T, Beeh KM, Garcia-Aymerich J, Paggiaro P, Molins E, et al. ACTIVATE: the effect of aclidinium/formoterol on hyperinflation, exercise capacity, and physical activity in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2545–2558. doi: 10.2147/COPD.S143488.
    1. O’Donnell D, Gebke K. Activity restriction in mild COPD: a challenging clinical problem. Int J Chron Obstruct Pulmon Dis. 2014;9:577–588. doi: 10.2147/COPD.S62766.
    1. Fastenau A, van Schayck OC, Gosselink R, Aretz KC, Muris JW. Discrepancy between functional exercise capacity and daily physical activity: a cross-sectional study in patients with mild to moderate COPD. Prim Care Respir J. 2013;22(4):425–430. doi: 10.4104/pcrj.2013.00090.
    1. Rodó-Pin A, Balañá A, Molina L, Gea J, Rodríguez DA. Level of daily physical activity in chronic obstructive pulmonary disease (COPD) patients according to GOLD classification. Med Clin (Barc) 2017;148(3):114–117. doi: 10.1016/j.medcli.2016.10.036.
    1. Yu T, Frei A, Ter Riet G, Puhan MA. Determinants of physical activity in patients with chronic obstructive pulmonary disease: a 5-year prospective follow-up study. Respiration. 2016;92(2):72–79. doi: 10.1159/000447975.
    1. Troosters T, Demeyer H. Physical inactivity as a missing link in understanding the progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(3):267–269. doi: 10.1164/rccm.201506-1123ED.

Source: PubMed

3
Abonnieren