Potential Biomarkers of the Earliest Clinical Stages of Parkinson's Disease

Anelya Kh Alieva, Elena V Filatova, Aleksey V Karabanov, Sergey N Illarioshkin, Petr A Slominsky, Maria I Shadrina, Anelya Kh Alieva, Elena V Filatova, Aleksey V Karabanov, Sergey N Illarioshkin, Petr A Slominsky, Maria I Shadrina

Abstract

Parkinson's disease (PD) is a widespread neurodegenerative disorder. Despite the intensive studies of this pathology, in general, the picture of the etiopathogenesis has still not been clarified fully. To understand better the mechanisms underlying the pathogenesis of PD, we analyzed the expression of 10 genes in the peripheral blood of treated and untreated patients with PD. 35 untreated patients with PD and 12 treated patients with Parkinson's disease (Hoehn and Yahr scores 1-2) were studied. An analysis of the mRNA levels of ATP13A2, PARK2, PARK7, PINK1, LRRK2, SNCA, ALDH1A1, PDHB, PPARGC1A, and ZNF746 genes in the peripheral blood of patients was carried out using reverse transcription followed by real-time PCR. A statistically significant and specific increase by more than 1.5-fold in the expression of the ATP13A2, PARK7, and ZNF746 genes was observed in patients with PD. Based on these results, it can be suggested that the upregulation of the mRNA levels of ATP13A2, PARK7, and ZNF746 in untreated patients in the earliest clinical stages can also be observed in the preclinical stages of PD, and that these genes can be considered as potential biomarkers of the preclinical stage of PD.

References

    1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry. 2008;79(4):368–376. doi: 10.1136/jnnp.2007.131045.
    1. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. Journal of the Neurological Sciences. 1973;20(4):415–455. doi: 10.1016/0022-510X(73)90175-5.
    1. Cookson M. R., Hardy J., Lewis P. A. Genetic neuropathology of Parkinson’s disease. International Journal of Clinical & Experimental Pathology. 2008;1(3):217–231.
    1. Saiki S., Sato S., Hattori N. Molecular pathogenesis of Parkinson’s disease: update. Journal of Neurology, Neurosurgery and Psychiatry. 2012;83(4):430–436. doi: 10.1136/jnnp-2011-301205.
    1. Trinh J., Farrer M. Advances in the genetics of Parkinson disease. Nature Reviews Neurology. 2013;9(8):445–454. doi: 10.1038/nrneurol.2013.132.
    1. Simunovic F., Yi M., Wang Y., et al. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain. 2009;132(7):1795–1809. doi: 10.1093/brain/awn323.
    1. Grünblatt E., Mandel S., Jacob-Hirsch J., et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. Journal of Neural Transmission. 2004;111(12):1543–1573. doi: 10.1007/s00702-004-0212-1.
    1. Bossers K., Meerhoff G., Balesar R., et al. Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathology. 2009;19(1):91–107. doi: 10.1111/j.1750-3639.2008.00171.x.
    1. Hauser M. A., Li Y.-J., Xu H., et al. Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Archives of Neurology. 2005;62(6):917–921. doi: 10.1001/archneur.62.6.917.
    1. Barbanti P., Fabbrini G., Ricci A., et al. Increased expression of dopamine receptors on lymphocytes in Parkinson’s disease. Movement Disorders. 1999;14(5):764–771. doi: 10.1002/1531-8257(199909)14:5lt;764::aid-mds1008>;2-w.
    1. Buttarelli F. R., Capriotti G., Pellicano C., et al. Central and peripheral dopamine transporter reduction in Parkinson’s disease. Neurological Research. 2009;31(7):687–691. doi: 10.1179/174313209x383259.
    1. Nagai Y., Ueno S., Saeki Y., Soga F., Hirano M., Yanagihara T. Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology. 1996;46(3):791–795. doi: 10.1212/wnl.46.3.791.
    1. Soreq L., Guffanti A., Salomonis N., et al. Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Computational Biology. 2014;10(3) doi: 10.1371/journal.pcbi.1003517.e1003517
    1. Soreq L., Bergman H., Goll Y., Greenberg D. S., Israel Z., Soreq H. Deep brain stimulation induces rapidly reversible transcript changes in Parkinson’s leucocytes. Journal of Cellular and Molecular Medicine. 2012;16(7):1496–1507. doi: 10.1111/j.1582-4934.2011.01444.x.
    1. Mutez E., Larvor L., Leprêtre F., et al. Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiology of Aging. 2011;32(10):1839–1848. doi: 10.1016/j.neurobiolaging.2009.10.016.
    1. Scherzer C. R., Eklund A. C., Morse L. J., et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(3):955–960. doi: 10.1073/pnas.0610204104.
    1. Soreq L., Israel Z., Bergman H., Soreq H. Advanced microarray analysis highlights modified neuro-immune signaling in nucleated blood cells from Parkinson’s disease patients. Journal of Neuroimmunology. 2008;201-202:227–236. doi: 10.1016/j.jneuroim.2008.06.019.
    1. Santiago J. A., Potashkin J. A. Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(7):2257–2262. doi: 10.1073/pnas.1423573112.
    1. Santiago J. A., Scherzer C. R., Potashkin J. A., Csermely P. Network analysis identifies SOD2 mRNA as a potential biomarker for Parkinson’s disease. PLoS ONE. 2014;9(10) doi: 10.1371/journal.pone.0109042.e109042
    1. Karlsson M. K., Sharma P., Aasly J., et al. Found in transcription: accurate Parkinson’s disease classification in peripheral blood. Journal of Parkinson’s Disease. 2013;3(1):19–29. doi: 10.3233/jpd-120159.
    1. Molochnikov L., Rabey J. M., Dobronevsky E., et al. A molecular signature in blood identifies early Parkinson’s disease. Molecular Neurodegeneration. 2012;7, article 26 doi: 10.1186/1750-1326-7-26.
    1. Shehadeh L. A., Yu K., Wang L., et al. SRRM2, a potential blood biomarker revealing high alternative splicing in Parkinson’s disease. PLoS ONE. 2010;5(2) doi: 10.1371/journal.pone.0009104.e9104
    1. Galter D., Buervenich S., Carmine A., Anvret M., Olson L. ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson’s disease and in the ventral tegmental area in schizophrenia. Neurobiology of Disease. 2003;14(3):637–647. doi: 10.1016/j.nbd.2003.09.001.
    1. McCaffery P., Drager U. C. High levels of a retinoic acid-generating dehydrogenase in the meso- telencephalic dopamine system. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(16):7772–7776. doi: 10.1073/pnas.91.16.7772.
    1. Westerlund M., Galter D., Carmine A., Olson L. Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh1 mRNAs in rodent embryos. Cell and Tissue Research. 2005;322(2):227–236. doi: 10.1007/s00441-005-0038-7.
    1. Ahmed S. S., Santosh W., Kumar S., Christlet H. T. T. Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. Journal of Biomedical Science. 2009;16(1, article 63) doi: 10.1186/1423-0127-16-63.
    1. Tsunemi T., La Spada A. R. PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond. Progress in Neurobiology. 2012;97(2):142–151. doi: 10.1016/j.pneurobio.2011.10.004.
    1. St-Pierre J., Drori S., Uldry M., et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408. doi: 10.1016/j.cell.2006.09.024.
    1. Shin J.-H., Ko H. S., Kang H., et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144(5):689–702. doi: 10.1016/j.cell.2011.02.010.
    1. Fahn B. S., Elton R., Members of the UPDRS Development Committee . Recent Developments in Parkinson’s Disease. Florham Park, NJ, USA: Macmillan Health Care Information; 1987. Unified Parkinson’s disease rating scale; pp. 153–164.
    1. Goetz C. G., Tilley B. C., Shaftman S. R., et al Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Movement Disorders. 2008;23(15):2129–2170.
    1. Hughes A. J., Daniel S. E., Kilford L., Lees A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery & Psychiatry. 1992;55(3):181–184. doi: 10.1136/jnnp.55.3.181.
    1. Warrington J. A., Nair A., Mahadevappa M., Tsyganskaya M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics. 2000;2(3):143–147.
    1. Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
    1. LeWitt P. Recent advances in CSF biomarkers for Parkinson’s disease. Parkinsonism and Related Disorders. 2012;18(supplement 1):S49–S51.
    1. Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M. R., Südhof T. C. α-synuclein promotes SNARE-complex assembly in vivo and in vitro . Science. 2010;329(5999):1663–1667. doi: 10.1126/science.1195227.
    1. Cherra S. J., III, Chu C. T. Autophagy in neuroprotection and neurodegeneration: a question of balance. Future Neurology. 2008;3(3):309–323. doi: 10.2217/14796708.3.3.309.
    1. Mattiazzi M., D’Aurelio M., Gajewski C. D., et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. The Journal of Biological Chemistry. 2002;277(33):29626–29633. doi: 10.1074/jbc.m203065200.
    1. Xu X., Martin F., Friedman J. S. The familial Parkinson’s disease gene DJ-1 (PARK7) is expressed in red cells and plays a role in protection against oxidative damage. Blood Cells, Molecules, and Diseases. 2010;45(3):227–232. doi: 10.1016/j.bcmd.2010.07.014.
    1. Dehay B., Martinez-Vicente M., Caldwell G. A., et al. Lysosomal impairment in Parkinson’s disease. Movement Disorders. 2013;28(6):725–732. doi: 10.1002/mds.25462.
    1. Castillo-Quan J. I. Parkin’ control: regulation of PGC-1α through PARIS in Parkinson’s disease. Disease Models and Mechanisms. 2011;4(4):427–429. doi: 10.1242/dmm.008227.

Source: PubMed

3
Abonnieren