Intestinal Microbiota Influence Immune Tolerance Post Allogeneic Hematopoietic Cell Transplantation and Intestinal GVHD

Natalie Köhler, Robert Zeiser, Natalie Köhler, Robert Zeiser

Abstract

Under normal conditions our intestines are inhabited by trillions of diverse microorganisms composing the intestinal microbiota, which are mostly non-pathogenic anaerobic commensal bacteria vital for the maintenance of immune homeostasis. The composition and diversity of the intestinal microbiota can be disturbed by various factors including diet, antibiotics, and exposure to intestinal pathogens. Alterations of the intestinal microbiota contributes to many diseases including graft-vs.-host disease (GVHD), a life threatening complication that occurs after allogeneic hematopoietic cell transplantation (allo-HCT) caused by an allogeneic reaction of donor T cells against recipient target tissues. Intestinal GVHD is most difficult to treat and connected to a high mortality. Due to recent advances in high-throughput sequencing technology, composition of the microbiome during allo-HCT has been characterized, and some common patterns have been identified. Metabolites produced by intestinal bacteria were shown to promote intestinal tissue homeostasis and immune tolerance post-allo-HCT. In this review, we discuss the role of the intestinal microbiota and metabolites in the context of acute GVHD. Moreover, novel therapeutic approaches that aim at protecting or regenerating intestinal cell populations will be highlighted.

Keywords: GVHD; Paneth cells; allo-HCT; intestinal inflammation; microbial metabolites; microbiota.

Figures

Figure 1
Figure 1
Microbial metabolites regulating gastrointestinal GVHD. IECs are damaged by the cytotoxic conditioning regimen as well as by GI GVHD, leading to disruption of the intestinal barrier. DAMPs released by the dying IECs as well as translocating bacteria and PAMPs activate host APCs via TLRs and the NLRP3 inflammasome, resulting in pro-inflammatory cytokine release, donor T cell activation, and GVHD. Microbial metabolites derived from intestinal microbiota can regulate IEC damage and mitigate GVHD. SCFAs mediate IEC protection via at least two different mechanisms. Firstly, binding of SCFAs to the G-protein-coupled receptor GPR43 on IECs leads to ERK phosphorylation and subsequent NLRP3 inflammasome activation, which promotes IEC integrity and repair by increasing IL-18 secretion. Secondly, the SCFA butyrate acts as a histone deacetylase inhibitor, thereby increasing expression of many different target genes, including anti-apoptotic BCL-B and the junctional protein JAM. This results in decreased IEC apoptosis and increased junctional integrity and hence IEC protection. MAIT cells located in the lamina propria respond to riboflavin metabolite antigens presented on the MHC class I-like molecule MR-1 to secrete large amounts of IL-17A, which enhances intestinal barrier integrity. Indoles and indole derivatives act via type I IFN signaling to protect and repair the mucosal barrier from damage and ameliorate GVHD. The exact molecular mechanisms and involved proteins remain to be elucidated. APC, antigen-presenting cell; DAMP, danger-associated molecular pattern; GI, gastrointestinal; GVHD, graft-vs.-host disease; IEC, intestinal epithelial cell; IFN, interferon; JAM, junctional adhesion molecule; MAIT cell, mucosal-associated invariant T cell; PAMP, pathogen-associated molecular pattern; SCFA, short chain fatty acid; siTCR, semiinvariant T cell receptor; TLR, Toll-like receptor; UA, uric acid.

References

    1. D'Souza, Fretham C. Current Uses and Outcomes of Hematopoietic Cell Transplantation (HCT): CIBMTR Summary Slides (2017). Available online at:
    1. Zeiser R, Socie G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation. Br j haematol. (2016) 175:191–207. 10.1111/bjh.14295
    1. Martin PJ, Rizzo JD, Wingard JR, Ballen K, Curtin PT, Cutler C, et al. . First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the american society of blood and marrow transplantation. Biol blood marrow transplant. (2012) 18:1150–63. 10.1016/j.bbmt.2012.04.005
    1. Westin JR, Saliba RM, De Lima M, Alousi A, Hosing C, Qazilbash MH, et al. . Steroid-refractory acute GVHD: predictors and outcomes. Adv hematol. (2011) 2011:601953. 10.1155/2011/601953
    1. Castilla-Llorente C, Martin PJ, McDonald GB, Storer BE, Appelbaum FR, Deeg HJ, et al. . Prognostic factors and outcomes of severe gastrointestinal GVHD after allogeneic hematopoietic cell transplantation. Bone marrow transplantat. (2014) 49:966–71. 10.1038/bmt.2014.69
    1. Schwab L, Goroncy L, Palaniyandi S, Gautam S, Triantafyllopoulou A, Mocsai A, et al. . Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nat med. (2014) 20:648–54. 10.1038/nm.3517
    1. Socié G, Mary J-Y, Lemann M, Daneshpouy M, Guardiola P, Meignin V, et al. . Prognostic value of apoptotic cells and infiltrating neutrophils in graft-versus-host disease of the gastrointestinal tract in humans: TNF and fas expression. Blood (2004) 103:50–7. 10.1182/blood-2003-03-0909
    1. Giroux M, Delisle JS, Gauthier SD, Heinonen KM, Hinsinger J, Houde B, et al. . SMAD3 prevents graft-versus-host disease by restraining Th1 differentiation and granulocyte-mediated tissue damage. Blood (2011) 117:1734–44. 10.1182/blood-2010-05-287649
    1. Klämbt V, Wohlfeil SA, Schwab L, Hülsdünker J, Ayata K, Apostolova P, et al. . A novel function for P2Y2 in myeloid recipient–derived cells during graft-versus-host disease. J Immunol. (2015) 195:5795–804. 10.4049/jimmunol.1501357
    1. Hulsdunker J, Ottmuller KJ, Neeff HP, Koyama M, Gao Z, Thomas OS, et al. . Neutrophils provide cellular communication between ileum and mesenteric lymph nodes at graft-versus-host disease onset. Blood (2018) 131:1858–69. 10.1182/blood-2017-10-812891
    1. Jones JM, Wilson R, Bealmear PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res. (1971) 45:577–88. 10.2307/3573066
    1. van Bekkum DW, Knaan S. Role of bacterial microflora in development of intestinal lesions from graft-versus-host reaction. J Natl Cancer Inst. (1977) 58:787–90. 10.1093/jnci/58.3.787
    1. van Bekkum DW, Roodenburg J, Heidt PJ, van der Waaij D. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst. (1974) 52:401–4. 10.1093/jnci/52.2.401
    1. Buckner CD, Clift RA, Sanders JE, Meyers JD, Counts GW, Farewell VT, et al. . Protective environment for marrow transplant recipients: a prospective study. Ann Intern Med. (1978) 89:893–901. 10.7326/0003-4819-89-6-893
    1. Petersen FB, Buckner CD, Clift RA, Nelson N, Counts GW, Meyers JD, et al. . Prevention of nosocomial infections in marrow transplant patients: a prospective randomized comparison of systemic antibiotics versus granulocyte transfusions. Infect Control (1986) 7:586–92. 10.1017/S0195941700065437
    1. Petersen FB, Buckner CD, Clift RA, Lee S, Nelson N, Counts GW, et al. . Laminar air flow isolation and decontamination: a prospective randomized study of the effects of prophylactic systemic antibiotics in bone marrow transplant patients. Infection (1986) 14:115–21. 10.1007/BF01643474
    1. Storb R, Prentice RL, Buckner CD, Clift RA, Appelbaum F, Deeg J, et al. . Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. beneficial effect of a protective environment. N Engl j med. (1983) 308:302–7. 10.1056/NEJM198302103080602
    1. Schmeiser T, Kurrle E, Arnold R, Krieger D, Heit W, Heimpel H. Antimicrobial prophylaxis in neutropenic patients after bone marrow transplantation. Infection (1988) 16:19–24. 10.1007/BF01646924
    1. Beelen DW, Haralambie E, Brandt H, Linzenmeier G, Muller KD, Quabeck K, et al. . Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host disease after sibling marrow transplantation. Blood (1992) 80:2668–76.
    1. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al. . Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci transl med. (2016) 8:339ra71. 10.1126/scitranslmed.aaf2311
    1. Weber D, Hiergeist A, Weber M, Dettmer K, Wolff D, Hahn J, et al. . Detrimental effect of broad-spectrum antibiotics on intestinal microbiome diversity in patients after allogeneic stem cell transplantation: lack of commensal sparing antibiotics. Clin Infect Dis. (2018). 10.1093/cid/ciy711 [Epub ahead of print].
    1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. . Diversity of the human intestinal microbial flora. Science (2005) 308:1635–8. 10.1126/science.1110591
    1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science (2005) 307:1915–20. 10.1126/science.1104816
    1. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. . Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol blood marrow transplant. (2014) 20:640–5. 10.1016/j.bbmt.2014.01.030
    1. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. . The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood (2014) 124:1174–82. 10.1182/blood-2014-02-554725
    1. Chiusolo P, Metafuni E, Paroni Sterbini F, Giammarco S, Masucci L, Leone G, et al. Gut microbiome changes after stem cell transplantation. Blood (2015) 126:1953.
    1. Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, et al. . MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut (2010) 59:1079–87. 10.1136/gut.2009.197434
    1. Stein-Thoeringer C, Peled JU, Lazrak A, Slingerland AE, Shono Y, Staffas A, et al. Domination of the gut microbiota with Enterococcus species early after allogeneic bone marrow transplantation is an important contributor to the development of acute graft-versus-host disease (GHVD) in mouse and man. Biol Blood Marrow Transplant. (2018) 24:S40–1. 10.1016/j.bbmt.2017.12.594
    1. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. . Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J exp med. (2012) 209:903–11. 10.1084/jem.20112408
    1. Gerbitz A, Schultz M, Wilke A, Linde HJ, Scholmerich J, Andreesen R, et al. . Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood (2004) 103:4365–7. 10.1182/blood-2003-11-3769
    1. Gorshein E, Wei C, Ambrosy S, Budney S, Vivas J, Shenkerman A, et al. . Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin transplant. (2017) 31:e12947. 10.1111/ctr.12947
    1. Ladas EJ, Bhatia M, Chen L, Sandler E, Petrovic A, Berman DM, et al. . The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. Bone marrow transplant. (2016) 51:262–6. 10.1038/bmt.2015.275
    1. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. . Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol blood marrow transpl. (2015) 21:1373–83. 10.1016/j.bbmt.2015.04.016
    1. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat immunol. (2016) 17:505–13. 10.1038/ni.3400
    1. Simms-Waldrip TR, Sunkersett G, Coughlin LA, Savani MR, Arana C, Kim J, et al. . Antibiotic-induced depletion of anti-inflammatory clostridia is associated with the development of graft-versus-host disease in pediatric stem cell transplantation patients. Biol blood marrow transplant. (2017) 23:820–9. 10.1016/j.bbmt.2017.02.004
    1. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, et al. . Intestinal microbiota containing barnesiella species cures vancomycin-resistant enterococcus faecium colonization. Infect Immun. (2013) 81:965–73. 10.1128/IAI.01197-12
    1. Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, et al. . The microbiome and hematopoietic cell transplantation: past, present, and future. Biol blood marrow transplant. (2018) 24:1322–40. 10.1016/j.bbmt.2018.02.009
    1. Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat rev Cancer (2018) 18:283–95. 10.1038/nrc.2018.10
    1. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. . Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. (2012) 55:905–14. 10.1093/cid/cis580
    1. Nishi K, Kanda J, Hishizawa M, Kitano T, Kondo T, Yamashita K, et al. . Impact of the use and type of antibiotics on acute graft-versus-host disease. Biol blood marrow transplant. (2018) 24:2178–83. 10.1016/j.bbmt.2018.06.031
    1. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes (2010) 1:254–68. 10.4161/gmic.1.4.12778
    1. Derrien M, Van Baarlen P, Hooiveld G, Norin E, Muller M, de Vos WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader akkermansia muciniphila. Front Microbiol. (2011) 2:166. 10.3389/fmicb.2011.00166
    1. Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. (2016) 9:229–39. 10.1177/1756283X15607414
    1. Qi X, Li X, Zhao Y, Wu X, Chen F, Ma X, et al. . Treating steroid refractory intestinal acute graft-vs.-host disease with fecal microbiota transplantation: a pilot study. Front immunol. (2018) 9:2195. 10.3389/fimmu.2018.02195
    1. DeFilipp Z, Peled JU, Li S, Mahabamunuge J, Dagher Z, Slingerland AE, et al. . Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. (2018) 2:745–53. 10.1182/bloodadvances.2018017731
    1. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, et al. . Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell (2011) 147:629–40. 10.1016/j.cell.2011.09.025
    1. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. . Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity (2013) 39:372–85. 10.1016/j.immuni.2013.08.003
    1. Swimm A, Giver CR, DeFilipp Z, Rangaraju S, Sharma A, Ulezko Antonova A, et al. Indoles derived from intestinal microbiota act via type i interferon signaling to limit graft-versus-host-disease. Blood (2018) 32:2506–19. 10.1182/blood-2018-03-838193
    1. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, et al. . The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. (2011) 13:517–26. 10.1016/j.cmet.2011.02.018
    1. Fujiwara H, Docampo MD, Riwes M, Peltier D, Toubai T, Henig I, et al. . Microbial metabolite sensor GPR43 controls severity of experimental GVHD. Nat commun. (2018) 9:3674. 10.1038/s41467-018-06048-w
    1. Willemsen LE, Koetsier MA, van Deventer SJ, van Tol EA. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut (2003) 52:1442–7. 10.1136/gut.52.10.1442
    1. Bilotta AJ, Ma C, Huang X, Yang W, Chen L, Yao S, et al. Microbiota metabolites SCFA promote intestinal epithelial repair and wound healing through promoting epithelial cell production of milk fat globule-EGF factor 8. J Immunol. (2018) 200(Suppl. 1):53.17.
    1. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. . Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature (2011) 469:543–7. 10.1038/nature09646
    1. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. . Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. (2006) 103:3920–5. 10.1073/pnas.0509592103
    1. Liu L, Guo X, Rao JN, Zou T, Xiao L, Yu T, et al. . Polyamines regulate E-cadherin transcription through c-Myc modulating intestinal epithelial barrier function. Am J Physiol Cell Physiol. (2009) 296:C801–10. 10.1152/ajpcell.00620.2008
    1. Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD, Straube J, et al. . Recipient mucosal-associated invariant T cells control GVHD within the colon. J clin invest. (2018) 128:1919–36. 10.1172/JCI91646
    1. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. (2010) 107:228–33. 10.1073/pnas.0906112107
    1. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, et al. . AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of notch. Nat immunol. (2011) 13:144–51. 10.1038/ni.2187
    1. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, et al. . The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity (2012) 36:92–104. 10.1016/j.immuni.2011.11.011
    1. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, et al. . Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science (2011) 334:1561–5. 10.1126/science.1214914
    1. Haak BW, Littmann ER, Chaubard JL, Pickard AJ, Fontana E, Adhi F, et al. . Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood (2018) 131:2978–86. 10.1182/blood-2018-01-828996
    1. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome (2016) 4:33. 10.1186/s40168-016-0178-x
    1. Jankovic D, Ganesan J, Bscheider M, Stickel N, Weber FC, Guarda G, et al. . The Nlrp3 inflammasome regulates acute graft-versus-host disease. J exp med. (2013) 210:1899–910. 10.1084/jem.20130084
    1. Song X, Dai D, He X, Zhu S, Yao Y, Gao H, et al. . Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity (2015) 43:488–501. 10.1016/j.immuni.2015.06.024
    1. Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, et al. . Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity (2015) 43:727–38. 10.1016/j.immuni.2015.09.003
    1. Takashima S, Kadowaki M, Aoyama K, Koyama M, Oshima T, Tomizuka K, et al. . The Wnt agonist R-spondin1 regulates systemic graft-versus-host disease by protecting intestinal stem cells. J exp med. (2011) 208:285–94. 10.1084/jem.20101559
    1. Hayase E, Hashimoto D, Nakamura K, Noizat C, Ogasawara R, Takahashi S, et al. . R-spondin1 expands paneth cells and prevents dysbiosis induced by graft-versus-host disease. J exp med. (2017) 214:3507–18. 10.1084/jem.20170418
    1. Eriguchi Y, Takashima S, Oka H, Shimoji S, Nakamura K, Uryu H, et al. . Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting paneth cell production of alpha-defensins. Blood (2012) 120:223–31. 10.1182/blood-2011-12-401166
    1. Levine JE, Huber E, Hammer ST, Harris AC, Greenson JK, Braun TM, et al. . Low paneth cell numbers at onset of gastrointestinal graft-versus-host disease identify patients at high risk for nonrelapse mortality. Blood (2013) 122:1505–9. 10.1182/blood-2013-02-485813
    1. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J invest dermatol. (2010) 130:1373–83. 10.1038/jid.2009.399
    1. Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ, et al. . Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis rheum. (2012) 64:1015–23. 10.1002/art.33446
    1. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, et al. . IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J clin invest. (2008) 118:534–44. 10.1172/JCI33194
    1. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity (2008) 29:947–57. 10.1016/j.immuni.2008.11.003
    1. Wu J, Gu J, Zhou S, Lu H, Lu Y, Lu L, et al. . Anti-IL-22 antibody attenuates acute graft-versus-host disease via increasing Foxp3(+) T cell through modulation of CD11b(+) cell function. J Immunol Res. (2018) 2018:1605341. 10.1155/2018/1605341
    1. Gartlan KH, Bommiasamy H, Paz K, Wilkinson AN, Owen M, Reichenbach DK, et al. . A critical role for donor-derived IL-22 in cutaneous chronic GVHD. Am J Transplant. (2018) 18:810–20. 10.1111/ajt.14513
    1. Hanash AM, Dudakov JA, Hua G, O'Connor MH, Young LF, Singer NV, et al. . Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity (2012) 37:339–50. 10.1016/j.immuni.2012.05.028
    1. Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, et al. . Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature (2015) 528:560–4. 10.1038/nature16460
    1. Zhao D, Kim YH, Jeong S, Greenson JK, Chaudhry MS, Hoepting M, et al. Survival signal REG3alpha prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J clin invest. (2018) 28:4970–9. 10.1172/JCI99261
    1. Ferrara JL, Harris AC, Greenson JK, Braun TM, Holler E, Teshima T, et al. . Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. Blood (2011) 118:6702–8. 10.1182/blood-2011-08-375006
    1. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, et al. . Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat med. (2008) 14:282–9. 10.1038/nm1720
    1. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, et al. . RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat immunol. (2009) 10:83–91. 10.1038/ni.1684
    1. Rashidi A, Shanley R, Yohe SL, Thyagarajan B, Curtsinger J, Anasetti C, et al. . Recipient single nucleotide polymorphisms in paneth cell antimicrobial peptide genes and acute graft-versus-host disease: analysis of BMT CTN-0201 and−0901 samples. Br j haematol. (2018) 182:887–94. 10.1111/bjh.15492
    1. Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, et al. . Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J clin invest. (1994) 94:1764–77. 10.1172/JCI117524
    1. Khan WB, Shui C, Ning S, Knox SJ. Enhancement of murine intestinal stem cell survival after irradiation by keratinocyte growth factor. Radiat Res. (1997) 148:248–53. 10.2307/3579609
    1. Panoskaltsis-Mortari A, Lacey DL, Vallera DA, Blazar BR. Keratinocyte growth factor administered before conditioning ameliorates graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood (1998) 92:3960–7.
    1. Krijanovski OI, Hill GR, Cooke KR, Teshima T, Crawford JM, Brinson YS, et al. . Keratinocyte growth factor separates graft-versus-leukemia effects from graft-versus-host disease. Blood (1999) 94:825–31.
    1. Blazar BR, Weisdorf DJ, Defor T, Goldman A, Braun T, Silver S, et al. . Phase 1/2 randomized, placebo-control trial of palifermin to prevent graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Blood (2006) 108:3216–22. 10.1182/blood-2006-04-017780
    1. Jagasia MH, Abonour R, Long GD, Bolwell BJ, Laport GG, Shore TB, et al. . Palifermin for the reduction of acute GVHD: a randomized, double-blind, placebo-controlled trial. Bone marrow transplant. (2012) 47:1350–5. 10.1038/bmt.2011.261
    1. Mozaffari HR, Payandeh M, Ramezani M, Sadeghi M, Mahmoudiahmadabadi M, Sharifi R. Efficacy of palifermin on oral mucositis and acute GVHD after hematopoietic stem cell transplantation (HSCT) in hematology malignancy patients: a meta-analysis of trials. Contemp Oncol. (2017) 21:299–305. 10.5114/wo.2017.72400

Source: PubMed

3
Abonnieren