A randomized, sham-controlled, quintuple-blinded trial to evaluate the NET device as an alternative to medication for promoting opioid abstinence

Mark K Greenwald, Samiran Ghosh, Joe R Winston, Mark K Greenwald, Samiran Ghosh, Joe R Winston

Abstract

Background: There is an unmet need for non-medication approaches to illicit opioid discontinuation and relapse prevention. The NET (NeuroElectric Therapy) Device is a non-invasive, battery-operated, portable, re-useable device designed to deliver bilateral transcranial transcutaneous alternating current electrical stimulation, and is intended to treat opioid use disorder (OUD) without medication. The device is a CE-marked Class IIa, non-significant risk, investigational medical device.

Objective: This prospective trial (NRC021) tests the hypothesis that the NET Device provides safe and effective neurostimulation treatment for persons with OUD who express a desire to be opioid abstinent without medications for opioid use disorder (MOUD).

Methods: NRC021 is a randomized, parallel-group, sham-controlled, quintuple-blinded, single-site study. Persons with OUD entering a residential treatment facility for opioid detoxification are assigned to active or sham treatment (n = 50/group). Group assignment is stratified on presence of any current non-opioid substance use disorder and by sex. The biostatistician maintains the blinding so that the study sponsor, principal investigator, research assistants, treatment staff, and participants remain blinded. Following discharge from the inpatient facility, participants are assessed once weekly over 12 weeks for substance use (using timeline followback interview and video assessment of observed oral fluid sample provision and testing). The primary efficacy endpoint is each participant's overall percentage of weekly abstinence from illicit opioid use without use of MOUD. The secondary efficacy endpoint is each participant's percentage of non-opioid drug-free weeks. Safety outcomes are also measured.

Conclusion: NRC021 is designed to assess the efficacy of a novel non-medication treatment for OUD.

Clinical trial registration: ClinicalTrials.gov with the identifier NCT04916600.

Keywords: Craving; Detoxification; Medications; Opioid use disorder; Transcranial electrical stimulation; Withdrawal.

Conflict of interest statement

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: MKG consults for Indivior Inc, which makes buprenorphine products. Indivior played no role in this study. SG declares no competing interests. JRW is chief executive officer and co-founder of NET Recovery Corp., which sponsors this study.

© 2022 Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
Upper panels: NET Device (left), mastoid-region electrode placement (middle), and cumulative distribution function of participants’ device utilization (percentage of sample with device “on”) across hours in two pilot studies conducted in Kentucky and Scotland (right). Lower panels: Time course of device intensity setting (left), and cumulative distribution functions of scores for the Subjective Opioid Withdrawal Scale (SOWS; middle) and craving (right).
Fig. 2
Fig. 2
Study schema Notes: “NET”, NeuroElectric Therapy. “COWS”, Clinical Opiate Withdrawal Scale. “TLFB”, Timeline Followback.
Fig. 3
Fig. 3
Schedule of Activities Notes: “OP”, outpatient. “Wk”, week. “sa”, self-administered. “BP”, blood pressure. “COWS”, Clinical Opiate Withdrawal Scale, “HR”, heart rate. “RR”, respiration rate. “O2”, oxygen saturation.

References

    1. Centers for Disease Control and Prevention . 2021. Increase in Fatal Drug Overdoses across the United States Driven by Synthetic Opioids before and during the COVID-19 Pandemic. (Aug 1)
    1. Degenhardt L., Charlson F., Mathers B., et al. The global epidemiology and burden of opioid dependence: results from the global burden of disease 2010 study. Addiction. 2014;109:1320–1333. doi: 10.1111/add.12551.
    1. Gomes T., Mamdani M.M., Dhalla I.A., Cornish S., Paterson J.M., Juurlink D.N. The burden of premature opioid-related mortality. Addiction. 2014;109:1482–1488. doi: 10.1111/add.12598.
    1. Humphreys K., Shover C.L., Andrews C.M., et al. Responding to the opioid crisis in North America and beyond: recommendations of the Stanford-Lancet commission. Lancet. 2022 Feb 5;399(10324):555–604. doi: 10.1016/S0140-6736(21)02252-2.
    1. McCance-Katz E.F. 2018. SAMHSA/HHS: an Update on the Opioid Crisis.
    1. Frank R.G., Pollack H.A. Addressing the fentanyl threat to public health. N. Engl. J. Med. 2017;376:605–607. doi: 10.1056/NEJMp1615145.
    1. Jones C.M., Bekheet F., Park J.N., Alexander G.C. The evolving overdose epidemic: synthetic opioids and rising stimulant-related harms. Epidemiol. Rev. 2020;42:154–166. doi: 10.1093/epirev/mxaa011.
    1. Ochalek T.A., Parker M.A., Higgins S.T., Sigmon S.C. Fentanyl exposure among patients seeking opioid treatment. J. Subst. Abuse Treat. 2019;96:23–25. doi: 10.1016/j.jsat.2018.10.007.
    1. Ciccarone D. The rise of illicit fentanyls, stimulants and the fourth wave of the opioid overdose crisis. Curr. Opin. Psychiatr. 2021;34:344–350. doi: 10.1097/YCO.0000000000000717.
    1. Frost M.C., Lampert H., Tsui J.I., Iles-Shih M.D., Williams E.C. The impact of methamphetamine/amphetamine use on receipt and outcomes of medications for opioid use disorder: a systematic review. Addiction Sci. Clin. Pract. 2021;16:62. doi: 10.1186/s13722-021-00266-2.
    1. American Society of Addiction Medicine . 2020. Caring for Patients during the COVID-19 Task Force.
    1. Henderson R., McInnes A., Mackey L., et al. Opioid use disorder treatment disruptions during the early COVID-19 pandemic and other emergent disasters: a scoping review addressing dual public health emergencies. BMC Publ. Health. 2021;21:1471. doi: 10.1186/s12889-021-11495-0.
    1. Melamed O.C., deRuiter W.K., Buckley L., Selby P. Coronavirus disease 2019 and the impact on substance use disorder treatments. Psychiatr. Clin. 2022;45:95–107. doi: 10.1016/j.psc.2021.11.006.
    1. Niles J.K., Gudin J., Radcliff J., Kaufman H.W. The opioid epidemic within the COVID-19 pandemic: drug testing in 2020. Popul. Health Manag. 2021;24(S1):S43–S51. doi: 10.1089/pop.2020.0230.
    1. Florence C., Luo F., Rice K. The economic burden of opioid use disorder and fatal opioid overdose in the United States, 2017. Drug Alcohol Depend. 2021;218 doi: 10.1016/j.drugalcdep.2020.108350.
    1. Grant B.F., Saha T.D., Ruan W.J., et al. Epidemiology of DSM-5 drug use disorder: results from the national epidemiologic survey on alcohol and related conditions-III. JAMA Psychiatr. 2016;73:39–47. doi: 10.1001/jamapsychiatry.2015.2132.
    1. Saloner B., Karthikeyan S. Changes in substance abuse treatment use among individuals with opioid use disorders in the United States, 2004-2013. JAMA. 2015;314:1515–1517. doi: 10.1001/jama.2015.10345.
    1. Substance Abuse and Mental Health Services Administration . Center for Behavioral Health Statistics and Quality; Rockville, MD: 2021. Key Substance Use and Mental Health Indicators in the United States: Results from the 2020 National Survey on Drug Use and Health (HHS Publication No. PEP21-07-01-003, NSDUH Series H-56) Substance Abuse and Mental Health Services Administration.
    1. Hall N.Y., Le L., Majmudar I., Mihalopoulos C. Barriers to accessing opioid substitution treatment for opioid use disorder: a systematic review from the client perspective. Drug Alcohol Depend. 2021;221 doi: 10.1016/j.drugalcdep.2021.108651.
    1. Mackey K., Veazie S., Anderson J., Bourne D., Peterson K. Barriers and facilitators to the use of medications for opioid use disorder: a rapid review. J. Gen. Intern. Med. 2020;35(Suppl 3):954–963. doi: 10.1007/s11606-020-06257-4.
    1. Madras B.K., Ahmad N.J., Wen J., Sharfstein J. 2020. Improving Access to Evidence-Based Medical Treatment for Opioid Use Disorder: Strategies to Address Key Barriers within the Treatment System. the Prevention, Treatment and Recovery Working Group of the Action Collaborative on Countering the U.S. Opioid Epidemic. NAM Perspectives. Discussion paper, Washington, DC.
    1. National Academy of Sciences . The National Academies Press; Washington, DC: 2019. Medications for Opioid Use Disorder Save Lives. Engineering, and Medicine.
    1. Jones C.M., Campopiano M., Baldwin G., McCance-Katz E. National and state treatment need and capacity for opioid agonist medication-assisted treatment. Am. J. Publ. Health. 2015;105:e55–e63. doi: 10.2105/AJPH.2015.302664.
    1. Krawczyk N., Jent V., Hadland S.E., Cérda M. Utilization of medications for opioid use disorder across US states: relationship to treatment availability and overdose mortality. J. Addiction Med. 2022;16:114–117. doi: 10.1097/ADM.0000000000000820.
    1. Wakeman S.E., Larochelle M.R., Ameli O., et al. Comparative effectiveness of different treatment pathways for opioid use disorder. JAMA Netw. Open. 2020;3 doi: 10.1001/jamanetworkopen.2019.20622.
    1. Kosten T.R., Baxter L.E. Effective management of opioid withdrawal symptoms: a gateway to opioid dependence treatment. Am. J. Addict. 2019;28:55–62. doi: 10.1111/ajad.12862.
    1. Larney S.L., Zador D., Sindicich N., Dolan K. A qualitative study of reasons for seeking ceasing opioid substitution treatment in prisons in New South Wales, Australia. Drug Alcohol Rev. 2017;36:305–310. doi: 10.1111/dar.12442.
    1. Muthulingam D., Bia J., Madden L.M., Farnum S.O., Barry D.T., Altice F.L. Using nominal group technique to identify barriers, facilitators, and preferences among patients seeking treatment for opioid use disorder: a needs assessment for decision making support. J. Subst. Abuse Treat. 2019;100:18–28. doi: 10.1016/j.jsat.2019.01.019.
    1. Stein M.D., Anderson B.J., Bailey G.L. Preferences for aftercare among persons seeking short-term opioid detoxification. J. Subst. Abuse Treat. 2015;59:99–103. doi: 10.1016/j.jsat.2015.07.002.
    1. Uebelacker L.A., Bailey G., Herman D., Anderson B., Stein M. Patients' beliefs about medications are associated with stated preference for methadone, buprenorphine, naltrexone, or no medication-assisted therapy following inpatient opioid detoxification. J. Subst. Abuse Treat. 2016;66:48–53. doi: 10.1016/j.jsat.2016.02.009.
    1. Gariti P., Auriacombe M., Incmikoski R., et al. A randomized double-blind study of NeuroElectric Therapy in opiate and cocaine detoxification. J. Subst. Abuse. 1992;4:299–308. doi: 10.1016/0899-3289(92)90037-x.
    1. Patterson M.A. Acupuncture and neuro-electric therapy in the treatment of alcohol and drug addictions. Austral. J. Alcohol Drug Depend. 1975;2:90–95.
    1. Patterson M.A. Electrostimulation and opiate withdrawal. Br. J. Psychiatry. 1985;146:213. doi: 10.1192/bjp.146.2.213.
    1. Patterson M.A., Patterson L., Patterson S.I. Electrostimulation: addiction treatment for the coming millennium. J. Alternative Compl. Med. 1996;2:485–491. doi: 10.1089/acm.1996.2.485.
    1. Alling F.A., Johnson B.D., Elmoghazy E. Cranial electrostimulation (CES) use in the detoxification of opiate-dependent patients. J. Subst. Abuse Treat. 1990;7:173–180. doi: 10.1016/0740-5472(90)90019-m.
    1. Auriacombe M., Tignol J., Le Moal M., Stinus L. Transcutaneous electrical stimulation with Limoge current potentiates morphine analgesia and attenuates opiate abstinence syndrome. Biol. Psychiatr. 1990;28:650–656. doi: 10.1016/0006-3223(90)90451-7.
    1. Dougherty P.M., Dafny N. Trans-cranial electrical stimulation attenuates the severity of naloxone-precipitated morphine withdrawal in rats. Life Sci. 1989;44:2051–2056. doi: 10.1016/0024-3205(89)90351-2.
    1. Ellison F., Ellison W., Daulouede J.P., et al. Opiate withdrawal and electro-stimulation. Double blind experiments. Encephale. 1987;13:225–229.
    1. Meade C.S., Lukas S.E., McDonald L.J., et al. A randomized trial of transcutaneous acupoint electric stimulation as adjunctive treatment for opioid detoxification. J. Subst. Abuse Treat. 2010;38:12–21. doi: 10.1016/j.jsat.2009.05.010.
    1. Cheng R.S., Pomeranz B. Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms: endorphin and non-endorphin systems. Life Sci. 1979;25:1957–1962. doi: 10.1016/0024-3205(79)90598-8.
    1. Han J.S., Chen X.H., Sun S.L., et al. Effect of low- and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain. 1991;47:295–298. doi: 10.1016/0304-3959(91)90218-M.
    1. Cheng L.-L., Ding M.-X., Xiong C., Zhou M.-Y., Qiu Z.-Y., Wang Q. Effects of electroacupuncture of different frequencies on the release profile of endogenous opioid peptides in the central nerve system of goats. Evid. Based Complement. Alternative Med. 2012 doi: 10.1155/2012/476457. 2012.
    1. Diana M., Muntoni A.L., Pistis M., Melis M., Gessa G.L. Lasting reduction in mesolimbic dopamine neuronal activity after morphine withdrawal. Eur. J. Neurosci. 1999;11:1037–1041. doi: 10.1046/j.1460-9568.1999.00488.x.
    1. García-Pérez D., López-Bellido R., Rodríguez R.E., Laorden M.L., Núnez C., Milanés M.V. Dysregulation of dopaminergic regulatory mechanisms in the mesolimbic pathway induced by morphine and morphine withdrawal. Brain Struct. Funct. 2015;220:1901–1919. doi: 10.1007/s00429-014-0761-5.
    1. Gardner E.L. Addiction and brain reward and antireward. Adv. Psychosom. Med. 2011;30:22–60. doi: 10.1159/000324065.
    1. Georges F., Stinus L., Bloch B., Le Moine C. Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur. J. Neurosci. 1999;11:481–490. doi: 10.1046/j.1460-9568.1999.00462.x.
    1. Koob G.F. Hedonic homeostatic dysregulation as a driver of drug-seeking behavior. Drug Discov. Today Dis. Models. 2008;5:207–215. doi: 10.1016/j.ddmod.2009.04.002.
    1. Shi J., Li S.-X., Zhang X.-L., et al. Time-dependent neuroendocrine alterations and drug craving during the first month of abstinence in heroin addicts. Am. J. Drug Alcohol Abuse. 2009;35:267–272. doi: 10.1080/00952990902933878.
    1. Shi W., Zhang Y., Zhao G., et al. Dysregulation of dopaminergic regulatory factors TH, Nurr1, and Pitx3 in the ventral tegmental area associated with neuronal injury induced by chronic morphine dependence. Int. J. Mol. Sci. 2019;20:250. doi: 10.3390/ijms20020250.
    1. Cirillo G., Di Pino G., Capone F., et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10:1–18. doi: 10.1016/j.brs.2016.11.009.
    1. Paulus W. Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychol. Rehabil. 2011;21:602–617. doi: 10.1080/09602011.2011.557292.
    1. Huang Y.-Z., Lu M.-K., Antal A., et al. Plasticity induced by non-invasive transcranial brain stimulation: a position paper. Clin. Neurophysiol. 2017;128:2318–2329. doi: 10.1016/j.clinph.2017.09.007.
    1. He W., Fong P.-Y., Leung T.W.H., et al. Protocols of non-invasive brain stimulation for neuroplasticity induction. Neurosci. Lett. 2020;719 doi: 10.1016/j.neulet.2018.02.045.
    1. Wesson D.R., Ling W. Clinical opiate withdrawal Scale (COWS) J. Psychoact. Drugs. 2003;35:253–259. doi: 10.1080/02791072.2003.10400007.
    1. Miranda A., Taca A. Neuromodulation with percutaneous electrical nerve field stimulation is associated with reduction in signs and symptoms of opioid withdrawal: a multisite, retrospective assessment. Am. J. Drug Alcohol Abuse. 2018;44:56–63. doi: 10.1080/00952990.2017.1295459.
    1. O'Neill R.T. Secondary endpoints cannot be validly analyzed if the primary endpoint does not demonstrate clear statistical significance. Control. Clin. Trials. 1997;18:550–556. doi: 10.1016/s0197-2456(97)00075-5.
    1. Kraemer H.C., Mintz J., Noda A., et al. Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch. Gen. Psychiatr. 2006;63:484–489. doi: 10.1001/archpsyc.63.5.484.
    1. Kleber H.D. Pharmacological treatments for opioid dependence: detoxification and maintenance options. Dialogues Clin. Neurosci. 2007;9:455–470. doi: 10.31887/DCNS.2007.9.2/hkleber.
    1. Sharma A., Kelly S.M., Mitchell S.G., et al. Update on barriers to pharmacotherapy for opioid use disorders. Curr. Psychiatr. Rep. 2017;19:35. doi: 10.1007/s11920-017-0783-9.
    1. Comer S.D., Dworkin R.H., Strain E.C. Medical devices to prevent opioid use disorder. Innovative approaches to addressing the opioid crisis. JAMA Psychiatr. 2019;76:351–352. doi: 10.1001/jamapsychiatry.2018.4379.

Source: PubMed

3
Abonnieren