Opioid suppression of conditioned anticipatory brain responses to breathlessness

Anja Hayen, Vishvarani Wanigasekera, Olivia K Faull, Stewart F Campbell, Payashi S Garry, Simon J M Raby, Josephine Robertson, Ruth Webster, Richard G Wise, Mari Herigstad, Kyle T S Pattinson, Anja Hayen, Vishvarani Wanigasekera, Olivia K Faull, Stewart F Campbell, Payashi S Garry, Simon J M Raby, Josephine Robertson, Ruth Webster, Richard G Wise, Mari Herigstad, Kyle T S Pattinson

Abstract

Opioid painkillers are a promising treatment for chronic breathlessness, but are associated with potentially fatal side effects. In the treatment of breathlessness, their mechanisms of action are unclear. A better understanding might help to identify safer alternatives. Learned associations between previously neutral stimuli (e.g. stairs) and repeated breathlessness induce an anticipatory threat response that may worsen breathlessness, contributing to the downward spiral of decline seen in clinical populations. As opioids are known to influence associative learning, we hypothesized that they may interfere with the brain processes underlying a conditioned anticipatory response to breathlessness in relevant brain areas, including the amygdala and the hippocampus. Healthy volunteers viewed visual cues (neutral stimuli) immediately before induction of experimental breathlessness with inspiratory resistive loading. Thus, an association was formed between the cue and breathlessness. Subsequently, this paradigm was repeated in two identical neuroimaging sessions with intravenous infusions of either low-dose remifentanil (0.7ng/ml target-controlled infusion) or saline (randomised). During saline infusion, breathlessness anticipation activated the right anterior insula and the adjacent operculum. Breathlessness was associated with activity in a network including the insula, operculum, dorsolateral prefrontal cortex, anterior cingulate cortex and the primary sensory and motor cortices. Remifentanil reduced breathlessness unpleasantness but not breathlessness intensity. Remifentanil depressed anticipatory activity in the amygdala and the hippocampus that correlated with reductions in breathlessness unpleasantness. During breathlessness, remifentanil decreased activity in the anterior insula, anterior cingulate cortex and sensory motor cortices. Remifentanil-induced reduction in breathlessness unpleasantness was associated with increased activity in the rostral anterior cingulate cortex and nucleus accumbens, components of the endogenous opioid system known to decrease the perception of aversive stimuli. These findings suggest that in addition to effects on brainstem respiratory control, opioids palliate breathlessness through an interplay of altered associative learning mechanisms. These mechanisms provide potential targets for novel ways to develop and assess treatments for chronic breathlessness.

Keywords: Anticipation; Breathing; Breathlessness; Conditioning; FMRI; Opioid.

Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Schematic illustration of experimental session and aversive conditioning paradigm. Prior to the application of each inspiratory load, the fixation cross on the screen changed to one of three shapes, a triangle, a square and a star to signal the imminent application of a stimulus (mild inspiratory load, strong inspiratory load) for eight seconds (anticipation period). The shape remained on the screen during the application of the stimulus (stimulus period) for 30–60 s and changed back to the fixation cross when the stimulus ceased. The shapes were counterbalanced across participants. Each inspiratory load was followed by an unloaded period of between 30 and 60 s that was indicated by a third visual cue. The use of relatively long breathlessness stimuli was chosen to maximize the emotional responses associated with anticipation of breathlessness. Participants rated their respiratory intensity and unpleasantness after each stimulus. Visual stimuli were generated and presented in white on a black background using the Cogent toolbox (www.vislab.ucl.ac.uk/Cogent/) for MatLab (MathWorks Inc., Natick, MA, USA).
Fig. 2
Fig. 2
Breathlessness intensity and unpleasantness scores (on a visual-analogue scale of 0–100%) during unloaded breathing and breathlessness during both saline and remifentanil (Remi) administration. Bars represent group mean, and error bars standard deviation. *Significantly different between the groups (p<.05>

Fig. 3

BOLD activation contrasting anticipation of…

Fig. 3

BOLD activation contrasting anticipation of breathlessness with anticipation of no loading during saline…

Fig. 3
BOLD activation contrasting anticipation of breathlessness with anticipation of no loading during saline administration. The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. Significant regions are displayed with a threshold of Z>2.3 with a cluster probability threshold of p

Fig. 4

BOLD activity corresponding with remifentanil-induced…

Fig. 4

BOLD activity corresponding with remifentanil-induced decreases in unpleasantness scores across subjects. Top: Increases…

Fig. 4
BOLD activity corresponding with remifentanil-induced decreases in unpleasantness scores across subjects. Top: Increases in BOLD activity with remifentanil that negatively correlate with decreases in breathlessness unpleasantness, with a graphical depiction of the contrast of parameter estimate (COPE) from the significant activity in the rostral ACC plotted against the decrease in unpleasantness scores. Bottom: Decreases in BOLD activity with remifentanil that correlate with decreases in unpleasantness during anticipation of strong loading in the hippocampus and amygdala, with a graphical depiction of the contrast of parameter estimate (COPE) from the combined significant activity plotted against the decrease in unpleasantness scores. The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. The bright gray region delineates the region of interest analysed. Abbreviations: ACC, anterior cingulate cortex; NA, nucleus accumbens; paraCC, paracingulate cortex; prefrontal cortex; PC, precuneus; amyg, amygdala; ant hipp, anterior hippocampus.

Fig. 5

BOLD activity during the breathlessness…

Fig. 5

BOLD activity during the breathlessness condition during saline (placebo) infusion (top figure) and…

Fig. 5
BOLD activity during the breathlessness condition during saline (placebo) infusion (top figure) and the effect of remifentanil infusion (lower figure). The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. Significant regions are displayed with a threshold of Z>2.3 and a cluster probability threshold of p
Similar articles
Cited by
References
    1. Aslan S., Xu F., Wang P.L., Uh J., Yezhuvath U.S., van Osch M., Lu H. Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn. Reson. Med. 2010;63:765–771. - PMC - PubMed
    1. Atlas L.Y., Bolger N., Lindquist M.A., Wager T.D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 2010;30:12964–12977. - PMC - PubMed
    1. Bingel U., Wanigasekera V., Wiech K., Ni Mhuircheartaigh R., Lee M.C., Ploner M., Tracey I. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 2011;3:70ra14. - PubMed
    1. Bond A., Lader M. Use of analog scales in rating subjective feelings. Br. J. Med. Psychol. 1974;47:211–218.
    1. Brooks J.C., Beckmann C.F., Miller K.L., Wise R.G., Porro C.A., Tracey I., Jenkinson M. Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage. 2008;39:680–692. - PubMed
Show all 87 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 3
Fig. 3
BOLD activation contrasting anticipation of breathlessness with anticipation of no loading during saline administration. The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. Significant regions are displayed with a threshold of Z>2.3 with a cluster probability threshold of p

Fig. 4

BOLD activity corresponding with remifentanil-induced…

Fig. 4

BOLD activity corresponding with remifentanil-induced decreases in unpleasantness scores across subjects. Top: Increases…

Fig. 4
BOLD activity corresponding with remifentanil-induced decreases in unpleasantness scores across subjects. Top: Increases in BOLD activity with remifentanil that negatively correlate with decreases in breathlessness unpleasantness, with a graphical depiction of the contrast of parameter estimate (COPE) from the significant activity in the rostral ACC plotted against the decrease in unpleasantness scores. Bottom: Decreases in BOLD activity with remifentanil that correlate with decreases in unpleasantness during anticipation of strong loading in the hippocampus and amygdala, with a graphical depiction of the contrast of parameter estimate (COPE) from the combined significant activity plotted against the decrease in unpleasantness scores. The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. The bright gray region delineates the region of interest analysed. Abbreviations: ACC, anterior cingulate cortex; NA, nucleus accumbens; paraCC, paracingulate cortex; prefrontal cortex; PC, precuneus; amyg, amygdala; ant hipp, anterior hippocampus.

Fig. 5

BOLD activity during the breathlessness…

Fig. 5

BOLD activity during the breathlessness condition during saline (placebo) infusion (top figure) and…

Fig. 5
BOLD activity during the breathlessness condition during saline (placebo) infusion (top figure) and the effect of remifentanil infusion (lower figure). The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. Significant regions are displayed with a threshold of Z>2.3 and a cluster probability threshold of p
Similar articles
Cited by
References
    1. Aslan S., Xu F., Wang P.L., Uh J., Yezhuvath U.S., van Osch M., Lu H. Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn. Reson. Med. 2010;63:765–771. - PMC - PubMed
    1. Atlas L.Y., Bolger N., Lindquist M.A., Wager T.D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 2010;30:12964–12977. - PMC - PubMed
    1. Bingel U., Wanigasekera V., Wiech K., Ni Mhuircheartaigh R., Lee M.C., Ploner M., Tracey I. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 2011;3:70ra14. - PubMed
    1. Bond A., Lader M. Use of analog scales in rating subjective feelings. Br. J. Med. Psychol. 1974;47:211–218.
    1. Brooks J.C., Beckmann C.F., Miller K.L., Wise R.G., Porro C.A., Tracey I., Jenkinson M. Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage. 2008;39:680–692. - PubMed
Show all 87 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 4
Fig. 4
BOLD activity corresponding with remifentanil-induced decreases in unpleasantness scores across subjects. Top: Increases in BOLD activity with remifentanil that negatively correlate with decreases in breathlessness unpleasantness, with a graphical depiction of the contrast of parameter estimate (COPE) from the significant activity in the rostral ACC plotted against the decrease in unpleasantness scores. Bottom: Decreases in BOLD activity with remifentanil that correlate with decreases in unpleasantness during anticipation of strong loading in the hippocampus and amygdala, with a graphical depiction of the contrast of parameter estimate (COPE) from the combined significant activity plotted against the decrease in unpleasantness scores. The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. The bright gray region delineates the region of interest analysed. Abbreviations: ACC, anterior cingulate cortex; NA, nucleus accumbens; paraCC, paracingulate cortex; prefrontal cortex; PC, precuneus; amyg, amygdala; ant hipp, anterior hippocampus.
Fig. 5
Fig. 5
BOLD activity during the breathlessness condition during saline (placebo) infusion (top figure) and the effect of remifentanil infusion (lower figure). The image consists of a color-rendered statistical map superimposed on a standard (MNI) brain. Significant regions are displayed with a threshold of Z>2.3 and a cluster probability threshold of p

References

    1. Aslan S., Xu F., Wang P.L., Uh J., Yezhuvath U.S., van Osch M., Lu H. Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn. Reson. Med. 2010;63:765–771.
    1. Atlas L.Y., Bolger N., Lindquist M.A., Wager T.D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 2010;30:12964–12977.
    1. Bingel U., Wanigasekera V., Wiech K., Ni Mhuircheartaigh R., Lee M.C., Ploner M., Tracey I. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 2011;3:70ra14.
    1. Bond A., Lader M. Use of analog scales in rating subjective feelings. Br. J. Med. Psychol. 1974;47:211–218.
    1. Brooks J.C., Beckmann C.F., Miller K.L., Wise R.G., Porro C.A., Tracey I., Jenkinson M. Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage. 2008;39:680–692.
    1. Brooks J.C., Faull O.K., Pattinson K.T., Jenkinson M. Physiological noise in brainstem FMRI. Front. Hum. Neurosci. 2013;7:623.
    1. Cohen E.R., Ugurbil K., Kim S.G. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J. Cereb. Blood Flow Metab. 2002;22:1042–1053.
    1. Craig A.D.B. How do you feel--now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009;10:59–70.
    1. Currow D.C., Abernethy A.P., Allcroft P., Banzett R.B., Bausewein C., Booth S., Carrieri-Kohlman V., Davidson P., Disler R., Donesky D., Dudgeon D., Ekstrom M., Farquhar M., Higginson I., Janssen D., Jensen D., Jolley C., Krajnik M., Laveneziana P., McDonald C., Maddocks M., Morelot-Panzini C., Moxham J., Mularski R.A., Noble S., O'Donnell D., Parshall M.B., Pattinson K., Phillips J., Ross J., Schwartzstein R.M., Similowski T., Simon S.T., Smith T., Wells A., Yates P., Yorke J., Johnson M.J. The need to research refractory breathlessness. Eur. Respir. J. 2016;47:342–343.
    1. Currow D.C., Quinn S., Greene A., Bull J., Johnson M.J., Abernethy A.P. The longitudinal pattern of response when morphine is used to treat chronic refractory dyspnea. J. Palliat. Med. 2013;16:881–886.
    1. De Peuter S., Van Diest I., Lemaigre V., Li W., Verleden G., Demedts M., Van den Bergh O. Can subjective asthma symptoms be learned? Psychosom. Med. 2005;67:454–461.
    1. De Peuter S., Van Diest I., Lemaigre V., Verleden G., Demedts M., Van den Bergh O. Dyspnea: the role of psychological processes. Clin. Psychol. Rev. 2004;24:557–581.
    1. Eichenbaum H., Lipton P.A. Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas. Hippocampus. 2008;18:1314–1324.
    1. Eippert F., Bingel U., Schoell E., Yacubian J., Buchel C. Blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans. J. Neurosci. 2008;28:5465–5472.
    1. Eippert F., Bingel U., Schoell E.D., Yacubian J., Klinger R., Lorenz J., Buchel C. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63:533–543.
    1. Ekstrom M.P., Abernethy A.P., Currow D.C. The management of chronic breathlessness in patients with advanced and terminal illness. BMJ. 2015;349:g7617.
    1. Fanselow M.S. Pavlovian conditioning, negative feedback, and blocking: mechanisms that regulate association formation. Neuron. 1998;20:625–627.
    1. Faull O.K., Jenkinson M., Clare S., Pattinson K.T. Functional subdivision of the human periaqueductal grey in respiratory control using 7 tesla fMRI. Neuroimage. 2015;113:356–364.
    1. Faull O.K., Jenkinson M., Ezra M., Pattinson K.T. Conditioned respiratory threat in the subdivisions of the human periaqueductal gray. Elife. 2016:5. pii: e12047.
    1. Favaroni Mendes L.A., Menescal-de-Oliveira L. Role of cholinergic, opioidergic and GABAergic neurotransmission of the dorsal hippocampus in the modulation of nociception in guinea pigs. Life Sci. 2008;83:644–650.
    1. Glover G.H., Li T.Q., Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor. Magn. Reson. Med. 2000;44:162–167.
    1. Griffanti L., Salimi-Khorshidi G., Beckmann C.F., Auerbach E.J., Douaud G., Sexton C.E., Zsoldos E., Ebmeier K.P., Filippini N., Mackay C.E., Moeller S., Xu J., Yacoub E., Baselli G., Ugurbil K., Miller K.L., Smith S.M. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage. 2014;95:232–247.
    1. Handwerker D.A., Ollinger J.M., D'Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage. 2004;21:1639–1651.
    1. Harvey A.K., Pattinson K.T., Brooks J.C., Mayhew S.D., Jenkinson M., Wise R.G. Brainstem functional magnetic resonance imaging: disentangling signal from physiological noise. J. Magn. Reson. Imaging. 2008;28:1337–1344.
    1. Hayen A., Herigstad M., Kelly M., Okell T.W., Murphy K., Wise R.G., Pattinson K.T. The effects of altered intrathoracic pressure on resting cerebral blood flow and its response to visual stimulation. Neuroimage. 2012;66:479–488.
    1. Hayen A., Herigstad M., Pattinson K.T. Understanding dyspnea as a complex individual experience. Maturitas. 2013;76:45–50.
    1. Hayen A., Herigstad M., Wiech K., Pattinson K.T. Subjective evaluation of experimental dyspnoea--effects of isocapnia and repeated exposure. Respir. Physiol. Neurobiol. 2015;208:21–28.
    1. Herigstad M., Hayen A., A., R., Pattinson K.T.S. Development of a dyspnoea word cue set for studies of emotional processing in COPD. Respir. Physiol. Neurobiol. 2016;223:37–42.
    1. Herigstad M., Hayen A., Evans E., Hardinge F.M., Davies R.J., Wiech K., Pattinson K.T. Dyspnea-related cues engage the prefrontal cortex: evidence from functional brain imaging in COPD. Chest. 2015;148:953–961.
    1. Herigstad M., Hayen A., Wiech K., Pattinson K.T. Dyspnoea and the brain. Respir. Med. 2011;105:809–817.
    1. Janssens T., Verleden G., De Peuter S., Van Diest I., Van den Bergh O. Inaccurate perception of asthma symptoms: a cognitive-affective framework and implications for asthma treatment. Clin. Psychol. Rev. 2009;29:317–327.
    1. Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–841.
    1. Jones A.K., Qi L.Y., Fujirawa T., Luthra S.K., Ashburner J., Bloomfield P., Cunningham V.J., Itoh M., Fukuda H., Jones T. In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci. Lett. 1991;126:25–28.
    1. Kelly R.E., Jr., Alexopoulos G.S., Wang Z., Gunning F.M., Murphy C.F., Morimoto S.S., Kanellopoulos D., Jia Z., Lim K.O., Hoptman M.J. Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J. Neurosci. Methods. 2010;189:233–245.
    1. LaBar K.S., LeDoux J.E., Spencer D.D., Phelps E.A. Impaired fear conditioning following unilateral temporal lobectomy in humans. J. Neurosci. 1995;15:6846–6855.
    1. Lansing R.W., Gracely R.H., Banzett R.B. The multiple dimensions of dyspnea: review and hypotheses. Respir. Physiol. Neurobiol. 2009;167:53–60.
    1. Leknes S., Tracey I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 2008;9:314–320.
    1. Leppa M., Korvenoja A., Carlson S., Timonen P., Martinkauppi S., Ahonen J., Rosenberg P.H., Aronen H.J., Kalso E. Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. Neuroimage. 2006;31:661–669.
    1. Ley R. Respiratory psychophysiology and behavior modification. Behav. Modif. 2001;25:491–494.
    1. Luchtmann M., Jachau K., Tempelmann C., Bernarding J. Alcohol induced region-dependent alterations of hemodynamic response: implications for the statistical interpretation of pharmacological fMRI studies. Exp. Brain Res. 2010;204:1–10.
    1. MacIntosh B.J., Pattinson K.T., Gallichan D., Ahmad I., Miller K.L., Feinberg D.A., Wise R.G., Jezzard P. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J. Cereb. Blood Flow Metab. 2008;28:1514–1522.
    1. McGaraughty S., Heinricher M.M. Microinjection of morphine into various amygdaloid nuclei differentially affects nociceptive responsiveness and RVM neuronal activity. Pain. 2002;96:153–162.
    1. McNally G.P., Pigg M., Weidemann G. Blocking, unblocking, and overexpectation of fear: a role for opioid receptors in the regulation of Pavlovian association formation. Behav. Neurosci. 2004;118:111–120.
    1. Minto C.F., Schnider T.W., Egan T.D., Youngs E., Lemmens H.J., Gambus P.L., Billard V., Hoke J.F., Moore K.H., Hermann D.J., Muir K.T., Mandema J.W., Shafer S.L. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.
    1. Minto C.F., Schnider T.W., Shafer S.L. Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997;86:24–33.
    1. Mitsis G.D., Governo R.J., Rogers R., Pattinson K.T. The effect of remifentanil on respiratory variability, evaluated with dynamic modeling. J. Appl. Physiol. 2009;106:1038–1049.
    1. Muthukumaraswamy S.D., Evans C.J., Edden R.A., Wise R.G., Singh K.D. Individual variability in the shape and amplitude of the BOLD-HRF correlates with endogenous GABAergic inhibition. Hum. Brain Mapp. 2012;33:455–465.
    1. Okell T.W., Chappell M.A., Kelly M.E., Jezzard P. Cerebral blood flow quantification using vessel-encoded arterial spin labeling. J. Cereb. Blood Flow Metab. 2013;33:1716–1724.
    1. Oxberry S.G., Bland J.M., Clark A.L., Cleland J.G., Johnson M.J. Repeat dose opioids may be effective for breathlessness in chronic heart failure if given for long enough. J. Palliat. Med. 2013;16:250–255.
    1. Oxley R., Macnaughton J. Inspiring change: humanities and social science insights into the experience and management of breathlessness. Curr. Opin. Support Palliat. Care. 2016;10:256–261.
    1. Palermo S., Benedetti F., Costa T., Amanzio M. Pain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies. Hum. Brain Mapp. 2015;36:1648–1661.
    1. Pattinson K. Functional brain imaging in respiratory medicine. Thorax. 2015;70:598–600.
    1. Pattinson K.T. Opioids and the control of respiration. Br. J. Anaesth. 2008;100:747–758.
    1. Pattinson K.T., Governo R.J., MacIntosh B.J., Russell E.C., Corfield D.R., Tracey I., Wise R.G. Opioids depress cortical centers responsible for the volitional control of respiration. J. Neurosci. 2009;29:8177–8186.
    1. Pattinson K.T., Johnson M.J. Neuroimaging of central breathlessness mechanisms. Curr. Opin. Support Palliat. Care. 2014;8:225–233.
    1. Pattinson K.T., Rogers R., Mayhew S.D., MacIntosh B.J., Lee M.C., Wise R.G. Remifentanil-induced cerebral blood flow effects in normal humans: dose and ApoE genotype. Anesth. Analg. 2008;106(347):347–348.
    1. Pattinson K.T., Rogers R., Mayhew S.D., Tracey I., Wise R.G. Pharmacological FMRI: measuring opioid effects on the BOLD response to hypercapnia. J. Cereb. Blood Flow Metab. 2007;27:414–423.
    1. Pattinson K.T., Wise R.G. Imaging the respiratory effects of opioids in the human brain. Adv. Exp. Med. Biol. 2016;903:145–156.
    1. Peiffer C. Morphine-induced relief of dyspnea: what are the mechanisms? Am. J. Respir. Crit. Care Med. 2011;184:867–869.
    1. Petrovic P., Kalso E., Petersson K.M., Ingvar M. Placebo and opioid analgesia-- imaging a shared neuronal network. Science. 2002;295:1737–1740.
    1. Phelps E.A. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr. Opin. Neurobiol. 2004;14:198–202.
    1. Phelps E.A., LeDoux J.E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48:175–187.
    1. Ploner M., Lee M.C., Wiech K., Bingel U., Tracey I. Prestimulus functional connectivity determines pain perception in humans. Proc. Natl. Acad. Sci. USA. 2010;107:355–360.
    1. Price D.D., Von der Gruen A., Miller J., Rafii A., Price C. A psychophysical analysis of morphine analgesia. Pain. 1985;22:261–269.
    1. Radloff L.S. The CES-D scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977;1:385–401.
    1. Ray W.A., Chung C.P., Murray K.T., Hall K., Stein C.M. Prescription of long-acting opioids and mortality in patients with chronic noncancer pain. Jama. 2016;315:2415–2423.
    1. Robertson J.A., Purple R.J., Cole P., Zaiwalla Z., Wulff K., Pattinson K.T. Sleep disturbance in patients taking opioid medication for chronic back pain. Anaesthesia. 2016;71:1296–1307.
    1. Rocker G.M., Simpson A.C., Joanne Young B., Horton R., Sinuff T., Demmons J., Margaret Donahue M.M., Hernandez P., Marciniuk D. Opioid therapy for refractory dyspnea in patients with advanced chronic obstructive pulmonary disease: patients' experiences and outcomes. CMAJ Open. 2013;1:E27–E36.
    1. Salimi-Khorshidi G., Douaud G., Beckmann C.F., Glasser M.F., Griffanti L., Smith S.M. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage. 2014;90:449–468.
    1. Sandkühler J., Lee J. How to erase memory traces of pain and fear. Trends Neurosci. 2013;36:343–352.
    1. Sesack S.R., Grace A.A. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35:27–47.
    1. Smith S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002;17:143–155.
    1. Spielberger, C.D., 2010. State-Trait Anxiety Inventory. In: The Corsini Encyclopedia of Psychology. John Wiley & Sons, Inc.
    1. Tyrer P., Eilenberg T., Fink P., Hedman E., Tyrer H. Health anxiety: the silent, disabling epidemic. BMJ. 2016;353:i2250.
    1. Vozoris N.T., Wang X., Fischer H.D., Bell C.M., O'Donnell D.E., Austin P.C., Stephenson A.L., Gill S.S., Rochon P.A. Incident opioid drug use and adverse respiratory outcomes among older adults with COPD. Eur. Respir. J. 2016;48:683–693.
    1. Wanigasekera V., Lee M.C., Rogers R., Hu P., Tracey I. Neural correlates of an injury-free model of central sensitization induced by opioid withdrawal in humans. J. Neurosci. 2011;31:2835–2842.
    1. Wanigasekera V., Lee M.C., Rogers R., Kong Y., Leknes S., Andersson J., Tracey I. Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects. Proc. Natl. Acad. Sci. USA. 2012;109:17705–17710.
    1. Wiech K., Ploner M., Tracey I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 2008;12:306–313.
    1. Wiech K., Tracey I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage. 2009;47:987–994.
    1. Winkler A.M., Ridgway G.R., Webster M.A., Smith S.M., Nichols T.E. Permutation inference for the general linear model. Neuroimage. 2014;92:381–397.
    1. Wise R.G., Pattinson K.T., Bulte D.P., Chiarelli P.A., Mayhew S.D., Balanos G.M., O'Connor D.F., Pragnell T.R., Robbins P.A., Tracey I., Jezzard P. Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging. J. Cereb. Blood Flow Metab. 2007;27:1521–1532.
    1. Wise R.G., Rogers R., Painter D., Bantick S., Ploghaus A., Williams P., Rapeport G., Tracey I. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage. 2002;16:999–1014.
    1. Wise R.G., Williams P., Tracey I. Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology. 2004;29:626–635.
    1. Woolrich M.W., Behrens T.E., Smith S.M. Constrained linear basis sets for HRF modelling using Variational Bayes. Neuroimage. 2004;21:1748–1761.
    1. Woolrich M.W., Behrens T.E.J., Beckmann C.F., Jenkinson M., Smith S.M. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage. 2004;21:1732–1747.
    1. Zaman J., Vlaeyen J.W., Van Oudenhove L., Wiech K., Van Diest I. Associative fear learning and perceptual discrimination: a perceptual pathway in the development of chronic pain. Neurosci. Biobehav. Rev. 2015;51:118–125.
    1. Zubieta J.K., Smith Y.R., Bueller J.A., Xu Y., Kilbourn M.R., Jewett D.M., Meyer C.R., Koeppe R.A., Stohler C.S. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311–315.

Source: PubMed

3
Abonnieren