A randomized, controlled trial on the effects of almonds on lipoprotein response to a higher carbohydrate, lower fat diet in men and women with abdominal adiposity

Paul T Williams, Nathalie Bergeron, Sally Chiu, Ronald M Krauss, Paul T Williams, Nathalie Bergeron, Sally Chiu, Ronald M Krauss

Abstract

Background: Almonds have been shown to lower LDL cholesterol but there is limited information regarding their effects on the dyslipidemia characterized by increased levels of very low density lipoproteins (VLDL) and small, dense low-density lipoprotein (LDL) particles that is associated with abdominal adiposity and high carbohydrate intake. The objective of the present study was to test whether substitution of almonds for other foods attenuates carbohydrate-induced increases in small, dense LDL in individuals with increased abdominal adiposity.

Methods: This was a randomized cross-over study of three 3wk diets, separated by 2wk washouts: a higher-carbohydrate (CHO) reference diet (CHOhigh), a higher-CHO diet with isocaloric substitution of 20% kcal (E) from almonds (CHOhigh + almonds), and a lower-CHO reference diet (CHOlow) in 9 men and 15 women who were overweight or obese. The two CHOhigh diets contained 50% carbohydrate, 15% protein, 35% fat (6% saturated, 21% monounsaturated, 8% polyunsaturated), while the CHOlow diet contained 25% carbohydrate, 28% protein, 47% fat (8% saturated, 28% monounsaturated, 8% polyunsaturated). Lipoprotein subfraction concentrations were measured by ion mobility.

Results: Relative to the CHOlow diet: 1) the CHOhigh + almonds diet significantly increased small, dense LDLIIIa (mean difference ± SE: 28.6 ± 10.4 nmol/L, P = 0.008), and reduced LDL-peak diameter (- 1.7 ± 0.6 Å, P = 0.008); 2) the CHOhigh diet significantly increased medium-sized LDLIIb (24.8 ± 11.4 nmol/L, P = 0.04) and large VLDL (3.7 ± 1.8 nmol/L, P = 0.05). Relative to CHOlow, the effects of CHOhigh on LDLIIIa (17.7 ± 10.6 nmol/L) and LDL-peak diameter (- 1.1 ± 0.6 Å) were consistent with those of CHOhigh + almonds, and the effects of CHOhigh + almonds on LDLIIb (21.0 ± 11.2 nmol/L) and large VLDL (2.8 ± 1.8 nmol/L) were consistent with those of CHOhigh, but did not achieve statistical significance (P > 0.05). None of the variables examined showed a significant difference between the CHOhigh + almonds and CHOhigh diets (P > 0.05).

Conclusion: Our analyses provided no evidence that deriving 20% E from almonds significantly modifies increases in levels of small, dense LDL or other plasma lipoprotein changes induced by a higher carbohydrate low saturated fat diet in individuals with increased abdominal adiposity.

Trial registration: Clinicaltrials.gov NCT01792648 .

Keywords: Almonds; High carbohydrate; Lipids; Lipoprotein size; Triglycerides.

Conflict of interest statement

Ethics approval and consent to participate

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and the procedures involving human subjects were approved by the Children’s Hospital and Research Center Oakland Institutional Review Board. Written informed consent was obtained from all subjects.

Consent for publication

Not applicable.

Competing interests

RMK and NB are recipients of a grant from Dairy Management Inc., but this grant is not for the submitted work; RMK holds licensed patents for ion mobility analyses.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Participant enrollment

References

    1. Berryman CE, Preston AG, Karmally W, Deckelbaum RJ, Kris-Etherton PM. Effects of almond consumption on the reduction of LDL-cholesterol: a discussion of potential mechanisms and future research directions. Nutr Rev. 2011;69(4):171–185. doi: 10.1111/j.1753-4887.2011.00383.x.
    1. Musa-Veloso K, Paulionis L, Poon T, Lee HY. The effects of almond consumption on fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci. 2016;5:e34. doi: 10.1017/jns.2016.19.
    1. Mayhew AJ, de Souza RJ, Meyre D, Anand SS, Mente A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br J Nutr. 2016;115(2):212–225. doi: 10.1017/S0007114515004316.
    1. Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982;23(1):97–104.
    1. Musunuru K, Orho-Melander M, Caulfield MP, Li S, Salameh WA, Reitz RE, et al. Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk. Arterioscler Thromb Vasc Biol. 2009;29(11):1975–1980. doi: 10.1161/ATVBAHA.109.190405.
    1. Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff DC, Jr, et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the multi-ethnic study of atherosclerosis (MESA) Atherosclerosis. 2007;192(1):211–217. doi: 10.1016/j.atherosclerosis.2006.05.007.
    1. St-Pierre AC, Cantin B, Dagenais GR, Mauriege P, Bernard PM, Despres JP, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Quebec cardiovascular study. Arterioscler Thromb Vasc Biol. 2005;25(3):553–559. doi: 10.1161/01.ATV.0000154144.73236.f4.
    1. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506. doi: 10.1161/01.CIR.82.2.495.
    1. Siri-Tarino PW, Chiu S, Bergeron N, Krauss RM. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu Rev Nutr. 2015;35:517–543. doi: 10.1146/annurev-nutr-071714-034449.
    1. Dreon DM, Fernstrom HA, Miller B, Krauss RM. Low-density lipoprotein subclass patterns and lipoprotein response to a reduced-fat diet in men. FASEB J. 1994;8(1):121–126. doi: 10.1096/fasebj.8.1.8299884.
    1. Dreon DM, Fernstrom HA, Williams PT, Krauss RM. LDL subclass patterns and lipoprotein response to a low-fat, high-carbohydrate diet in women. Arterioscler Thromb Vasc Biol. 1997;17(4):707–714. doi: 10.1161/01.ATV.17.4.707.
    1. Dreon DM, Fernstrom HA, Williams PT, Krauss RM. A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am J Clin Nutr. 1999;69(3):411–418. doi: 10.1093/ajcn/69.3.411.
    1. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19):1973–1974. doi: 10.1001/jama.2015.4260.
    1. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) JAMA. 2001;285(19):2486–2497. doi: 10.1001/jama.285.19.2486.
    1. Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr. 2006;83(5):1025–1031. doi: 10.1093/ajcn/83.5.1025.
    1. Institute of Medicine of the National Academies. Dietary reference intakes for energy, carbohydrate, Fiber, fat, fatty Acids,Cholesterol, Protein,and amino acids. The: National Academies Press; 2005.
    1. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470–475.
    1. Nagele U, Hagele EO, Sauer G, Wiedemann E, Lehmann P, Wahlefeld AW, et al. Reagent for the enzymatic determination of serum total triglycerides with improved lipolytic efficiency. J Clin Chem Clin Biochem. 1984;22(2):165–174.
    1. Warnick GR, Nguyen T, Albers AA. Comparison of improved precipitation methods for quantification of high-density lipoprotein cholesterol. Clin Chem. 1985;31(2):217–222.
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
    1. Rifai N, King ME. Immunoturbidimetric assays of apolipoproteins a, AI, AII, and B in serum. Clin Chem. 1986;32(6):957–961.
    1. Smith SJ, Cooper GR, Henderson LO, Hannon WH. An international collaborative study on standardization of apolipoproteins A-I and B. Part I. Evaluation of a lyophilized candidate reference and calibration material. Clin Chem. 1987;33(12):2240–2249.
    1. Caulfield MP, Li S, Lee G, Blanche PJ, Salameh WA, Benner WH, et al. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem. 2008;54(8):1307–1316. doi: 10.1373/clinchem.2007.100586.
    1. Otvos JD, Rudel LL, McConnell JP. Author reply to: concerns regarding lipoprotein particle measurement by ion mobility analysis. Clin Chem. 2008;54(12):2086–2087. doi: 10.1373/clinchem.2008.113795.
    1. Bravata DM, Wells CK, Concato J, Kernan WN, Brass LM, Gulanski BI. Two measures of insulin sensitivity provided similar information in a U.S. population. J Clin Epidemiol. 2004;57(11):1214–1217. doi: 10.1016/j.jclinepi.2004.05.001.
    1. Sabate J, Oda K, Ros E. Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials. Arch Intern Med. 2010;170(9):821–827. doi: 10.1001/archinternmed.2010.79.
    1. Lee Y, Berryman CE, West SG, Chen CO, Blumberg JB, Lapsley KG, et al. Effects of dark chocolate and almonds on cardiovascular risk factors in overweight and obese individuals: a randomized controlled-feeding trial. J Am Heart Assoc. 2017;6(12).
    1. Third Report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143–3421. doi: 10.1161/circ.106.25.3143.

Source: PubMed

3
Abonnieren