Treatment of systemic lupus erythematosus patients with the BAFF antagonist "peptibody" blisibimod (AMG 623/A-623): results from randomized, double-blind phase 1a and phase 1b trials

William Stohl, Joan T Merrill, R John Looney, Jill Buyon, Daniel J Wallace, Michael H Weisman, Ellen M Ginzler, Blaire Cooke, Donna Holloway, Arunan Kaliyaperumal, Kameswara Rao Kuchimanchi, Tsui Chern Cheah, Erik Rasmussen, John Ferbas, Shelley S Belouski, Wayne Tsuji, Debra J Zack, William Stohl, Joan T Merrill, R John Looney, Jill Buyon, Daniel J Wallace, Michael H Weisman, Ellen M Ginzler, Blaire Cooke, Donna Holloway, Arunan Kaliyaperumal, Kameswara Rao Kuchimanchi, Tsui Chern Cheah, Erik Rasmussen, John Ferbas, Shelley S Belouski, Wayne Tsuji, Debra J Zack

Abstract

Introduction: Blisibimod is a potent B cell-activating factor (BAFF) antagonist that binds to both cell membrane-expressed and soluble BAFF. The goal of these first-in-human studies was to characterize the safety, tolerability, and pharmacokinetic and pharmacodynamic profiles of blisibimod in subjects with systemic lupus erythematosus (SLE).

Methods: SLE subjects with mild disease that was stable/inactive at baseline received either a single dose of blisibimod (0.1, 0.3, 1, or 3 mg/kg subcutaneous [SC] or 1, 3, or 6 mg/kg intravenous [IV]) or placebo (phase 1a; N = 54), or four weekly doses of blisibimod (0.3, 1, or 3 mg/kg SC or 6 mg/kg IV) or placebo (phase 1b; N = 63). Safety and tolerability measures were collected, and B cell subset measurements and pharmacokinetic analyses were performed.

Results: All subjects (93 % female; mean age 43.7 years) carried the diagnosis of SLE for ≥ 1 year. Single- and multiple-dose treatment with blisibimod produced a decrease in the number of naïve B cells (24-76 %) and a transient relative increase in the memory B cell compartment, with the greatest effect on IgD(-)CD27+; there were no notable changes in T cells or natural killer cells. With time, memory B cells reverted to baseline, leading to a calculated 30 % reduction in total B cells by approximately 160 days after the first dose. In both the single- and multiple-dosing SC cohorts, the pharmacokinetic profile indicated slow absorption, dose-proportional exposure from 0.3 through 3.0 mg/kg SC and 1 through 6 mg/kg IV, linear pharmacokinetics across the dose range of 1.0-6.0 mg/kg, and accumulation ratios ranging from 2.21 to 2.76. The relative increase in memory B cells was not associated with safety signals, and the incidence of adverse events, anti-blisibimod antibodies, and clinical laboratory abnormalities were comparable between blisibimod- and placebo-treated subjects.

Conclusions: Blisibimod changed the constituency of the B cell pool and single and multiple doses of blisibimod exhibited approximate dose-proportional pharmacokinetics across the dose range 1.0-6.0 mg/kg. The safety and tolerability profile of blisibimod in SLE was comparable with that of placebo. These findings support further studies of blisibimod in SLE and other B cell-mediated diseases.

Trial registration: Clinicaltrials.gov NCT02443506 . Registered 11 May 2015. NCT02411136 Registered 7 April 2015.

Figures

Fig. 1
Fig. 1
Mean (SD) concentration-time profiles following administration of blisibimod in subjects with systemic lupus erythematosus. Subjects were treated with the indicated single doses of blisibimod IV (a), SC (b), or the indicated weekly doses (c) for 4 weeks. Abbreviations: IV intravenous, LOQ lower limit of quantification, SC subcutaneous, SD standard deviation
Fig. 2
Fig. 2
B cell subsets following administration of blisibimod to subjects with systemic lupus erythematosus treated with the four indicated weekly doses in the phase 1b study. B cell subsets are peripheral blood CD19+ CD20+ total B cells (a), IgD+ CD27- naïve B cells (b), IgD+ CD27+ memory B cells (c), and IgD- CD27+ memory B cells (d). Each symbol represents an individual patient at the indicated time point, and lines were generated by smoothing with a spline function

References

    1. Thompson J, Schneider P, Kalled S, Wang L, Lefevre E, Cachero T, et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med. 2000;192:129–135. doi: 10.1084/jem.192.1.129.
    1. Do R, Hatada E, Lee H, Tourigny M, Hilbert D, Chen-Kiang S. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med. 2000;192:953–964. doi: 10.1084/jem.192.7.953.
    1. Batten M, Groom J, Cachero T, Qian F, Schneider P, Tschopp J, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med. 2000;192:1453–1466. doi: 10.1084/jem.192.10.1453.
    1. Gross J, Dillon S, Mudri S, Johnston J, Littau A, Roque R, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15:289–302. doi: 10.1016/S1074-7613(01)00183-2.
    1. Schiemann B, Gommerman J, Vora K, Cachero T, Shulga-Morskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293:2111–2114. doi: 10.1126/science.1061964.
    1. Mackay F, Woodcock S, Lawton P, Ambrose C, Baetscher M, Schneider P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999;190:1697–1710. doi: 10.1084/jem.190.11.1697.
    1. Khare S, Sarosi I, Xia X, McCabe S, Minder K, Solovyev I, et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. PNAS. 2000;97:3370–3375. doi: 10.1073/pnas.97.7.3370.
    1. Gross J, Johnston J, Mudri S, Enselman R, Dillon S, Madden K, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404:995–999. doi: 10.1038/35010115.
    1. Stohl W, Xu D, Kim K, Koss M, Jorgensen T, Deocharan B, et al. BAFF overexpression and accelerated glomerular disease in mice with incomplete genetic predisposition to systemic lupus erythematosus. Arthritis Rheum. 2005;52:2080–2091. doi: 10.1002/art.21138.
    1. Groom J, Fletcher C, Walters S, Grey S, Watt S, Sweet M, et al. BAFF and MyD88 signals promote a lupus-like disease independent of T cells. J Exp Med. 2007;204:1959–1971. doi: 10.1084/jem.20062567.
    1. Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French D, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity. 2002;17:515–524. doi: 10.1016/S1074-7613(02)00425-9.
    1. Ramanujam M, Wang X, Huang W, Liu Z, Schiffer L, Tao H, et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest. 2006;116:724–734. doi: 10.1172/JCI26385.
    1. Jacob C, Pricop L, Putterman C, Koss M, Liu Y, Kollaros M, et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand mixed 2328 mice deficient in BAFF. J Immunol. 2006;177:2671–2680. doi: 10.4049/jimmunol.177.4.2671.
    1. Zhang J, Roschke V, Baker K, Wang Z, Alarcón G, Fessler B, et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol. 2001;166:6–10. doi: 10.4049/jimmunol.166.1.6.
    1. Cheema G, Roschke V, Hilbert D, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 2001;44:1313–1319. doi: 10.1002/1529-0131(200106)44:6<1313::AID-ART223>;2-S.
    1. Stohl W, Metyas S, Tan S, Cheema G, Oamar B, Xu D, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 2003;48:3475–3486. doi: 10.1002/art.11354.
    1. Petri M, Stohl W, Chatham W, McCune W, Chevrier M, Ryel J, et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 2008;58:2453–2459. doi: 10.1002/art.23678.
    1. Collins C, Gavin A, Migone T, Hilbert D, Nemazee D, Stohl W. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res Ther. 2006;8:R6. doi: 10.1186/ar1855.
    1. Becker-Merok A, Nikolaisen C, Nossent H. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus. 2006;15:570–576. doi: 10.1177/0961203306071871.
    1. Ju S, Zhang D, Wang Y, Ni H, Kong X, Zhong R. Correlation of the expression levels of BLyS and its receptors mRNA in patients with systemic lupus erythematosus. Clin Biochem. 2006;39:1131–1137. doi: 10.1016/j.clinbiochem.2006.09.010.
    1. Hong S, Reiff A, Yang H, Migone T, Ward C, Marzan K, et al. B lymphocyte stimulator expression in pediatric systemic lupus erythematosus and juvenile idiopathic arthritis patients. Arthritis Rheum. 2009;60:3400–3409. doi: 10.1002/art.24902.
    1. Navarra S, Guzmán R, Gallacher A, Hall S, Levy R, Jimenez R, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:721–731. doi: 10.1016/S0140-6736(10)61354-2.
    1. Furie R, Petri M, Zamani O, Cervera R, Wallace D, Tegzová D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:3918–3930. doi: 10.1002/art.30613.
    1. Hsu H, Khare S, Lee F, Miner K, Hu Y, Stolina M, et al. A novel modality of BAFF-specific inhibitor AMG623 peptibody reduces B-cell number and improves outcomes in murine models of autoimmune disease. Clin Exp Rheumatol. 2012;30:197–201.
    1. Tan E, Cohen A, Fries J, Masi A, McShane D, Rothfield N, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–1277. doi: 10.1002/art.1780251101.
    1. Hochberg M. Updating the American College of Rheumatology revised criteria for the classification of systemic erythematosus lupus. Arthritis Rheum. 1997;40:1725–1734. doi: 10.1002/art.1780400928.
    1. Belouski S, Wallace D, Weisman M, Ishimori M, Hendricks L, Zack D, et al. Sample stability and variability of B-cell subsets in blood from healthy subjects and patients with systemic lupus erythematosus. Cytometry B Clin Cytom. 2010;78:49–58.
    1. Reinsch C. Smoothing by spline functions. Numer Math. 1967;10:177–183. doi: 10.1007/BF02162161.
    1. Dall’Era M, Chakravarty E, Wallace D, Genovese M, Weisman M, Kavanaugh A, et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 2007;56:4142–4150. doi: 10.1002/art.23047.
    1. Tak P, Thurlings R, Rossier C, Nestorov I, Dimic A, Mircetic V, et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 2008;58:61–72. doi: 10.1002/art.23178.
    1. Wallace D, Stohl W, Furie R, Lisse J, McKay J, Merrill J, et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 2009;61:1168–1178. doi: 10.1002/art.24699.
    1. Stohl W, Hiepe F, Latinis K, Thomas M, Scheinberg M, Clarke A, et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 2012;64:2328–2337. doi: 10.1002/art.34400.
    1. Looney R, Anolik J, Campbell D, Felgar R, Young F, Arend L, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 2004;50:2580–2589. doi: 10.1002/art.20430.
    1. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000;165:6635–6643. doi: 10.4049/jimmunol.165.11.6635.
    1. Korganow AS, Knapp AM, Nehme-Schuster H, Soulas-Sprauel P, Poindron V, Pasquali JL, et al. Peripheral B cell abnormalities in patients with systemic lupus erythematosus in quiescent phase: decreased memory B cells and membrane CD19 expression. J Autoimmun. 2010;34:426–3. doi: 10.1016/j.jaut.2009.11.002.
    1. Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2008;62:222–233. doi: 10.1002/art.27233.
    1. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012;64:1215–1226. doi: 10.1002/art.34359.
    1. Pena-Rossi C, Nasonov E, Stanislav M, Yakusevich V, Ershova O, Lomareva N, et al. An exploratory dose-escalating study investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous atacicept in patients with systemic lupus erythematosus. Lupus. 2009;18:547–555. doi: 10.1177/0961203309102803.
    1. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 2003;48:3253–3265. doi: 10.1002/art.11299.
    1. Furie RA, Scheinberg MA, Leon G, Ramiterre EB, Thomas M, Martin RS, et al. A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann Rheum Dis 2014. doi: 10.1136/annrheumdis-2013-205144. Epub ahead of print.
    1. Isenberg DA, Urowitz MB, Merrill JT, Hoffman RW, Linnik MD, Morgan-Cox M, et al. Efficacy and Safety of subcutaneous tabalumab in patients with systemic lupus erythematosus (SLE): Results from 2 phase 3, 52-week, multicenter, randomized, double-blind, placebo-controlled trials. Arthritis Rheum. 2014;66:S225.
    1. Bossen C, Tardivel A, Willen L, Fletcher C, Perroud M, Beermann F, et al. Mutation of the BAFF furin cleavage site impairs B-cell homeostasis and antibody responses. Eur J Immunol. 2011;41:787–797. doi: 10.1002/eji.201040591.
    1. Huard B, Schneider P, Mauri D, Tschopp J, French L. T cell costimulation by the TNF ligand BAFF. J Immunol. 2001;167:6225–6231. doi: 10.4049/jimmunol.167.11.6225.
    1. Ng L, Sutherland A, Newton R, Qian F, Cachero T, Scott M, et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol. 2004;173:807–817. doi: 10.4049/jimmunol.173.2.807.
    1. Sutherland A, Ng L, Fletcher C, Shum B, Newton R, Grey S, et al. BAFF augments certain Th1-associated inflammatory responses. J Immunol. 2005;174:5537–5544. doi: 10.4049/jimmunol.174.9.5537.
    1. Zhou X, Xia Z, Lan Q, Wang J, Su W, Han Y, et al. BAFF promotes Th17 cells and aggravates experimental autoimmune encephalomyelitis. PLoS One. 2011;6 doi: 10.1371/journal.pone.0023629.

Source: PubMed

3
Abonnieren