The Walnuts and Healthy Aging Study (WAHA): Protocol for a Nutritional Intervention Trial with Walnuts on Brain Aging

Sujatha Rajaram, Cinta Valls-Pedret, Montserrat Cofán, Joan Sabaté, Mercè Serra-Mir, Ana M Pérez-Heras, Adam Arechiga, Ricardo P Casaroli-Marano, Socorro Alforja, Aleix Sala-Vila, Mónica Doménech, Irene Roth, Tania M Freitas-Simoes, Carlos Calvo, Anna López-Illamola, Ella Haddad, Edward Bitok, Natalie Kazzi, Lynnley Huey, Joseph Fan, Emilio Ros, Sujatha Rajaram, Cinta Valls-Pedret, Montserrat Cofán, Joan Sabaté, Mercè Serra-Mir, Ana M Pérez-Heras, Adam Arechiga, Ricardo P Casaroli-Marano, Socorro Alforja, Aleix Sala-Vila, Mónica Doménech, Irene Roth, Tania M Freitas-Simoes, Carlos Calvo, Anna López-Illamola, Ella Haddad, Edward Bitok, Natalie Kazzi, Lynnley Huey, Joseph Fan, Emilio Ros

Abstract

Introduction: An unwanted consequence of population aging is the growing number of elderly at risk of neurodegenerative disorders, including dementia and macular degeneration. As nutritional and behavioral changes can delay disease progression, we designed the Walnuts and Healthy Aging (WAHA) study, a two-center, randomized, 2-year clinical trial conducted in free-living, cognitively healthy elderly men and women. Our interest in exploring the role of walnuts in maintaining cognitive and retinal health is based on extensive evidence supporting their cardio-protective and vascular health effects, which are linked to bioactive components, such as n-3 fatty acids and polyphenols. Methods: The primary aim of WAHA is to examine the effects of ingesting walnuts daily for 2 years on cognitive function and retinal health, assessed with a battery of neuropsychological tests and optical coherence tomography, respectively. All participants followed their habitual diet, adding walnuts at 15% of energy (≈30-60 g/day) (walnut group) or abstaining from walnuts (control group). Secondary outcomes include changes in adiposity, blood pressure, and serum and urinary biomarkers in all participants and brain magnetic resonance imaging in a subset. Results: From May 2012 to May 2014, 708 participants (mean age 69 years, 68% women) were randomized. The study ended in May 2016 with a 90% retention rate. Discussion: The results of WAHA might provide high-level evidence of the benefit of regular walnut consumption in delaying the onset of age-related cognitive impairment and retinal pathology. The findings should translate into public health policy and sound recommendations to the general population (ClinicalTrials.gov identifier NCT01634841).

Keywords: Alzheimer’s disease; age-related macular degeneration; aging; cognitive decline; dietary intervention; randomized trial; walnuts.

Figures

FIGURE 1
FIGURE 1
Design of the Walnuts and Healthy Aging (WAHA) study.
FIGURE 2
FIGURE 2
Recruitment and participant allocation.
FIGURE 3
FIGURE 3
Baseline biomarkers of adherence to walnuts and change after 1 year by intervention group. RBC, red blood cells. In red, mean and 95% CI (ANCOVA, adjusting for center, age, and sex). (A) Percentage of total fatty acids in RBC at baseline. Values are 0.233 (0.218–0.247) and 0.221 (0.206–0.236) for the walnut and control groups, respectively. (B) Percentage of change of total fatty acids in RBC after 1 year. Values are 0.163 (0.144–0.183) and 0.019 (0.001–0.039) for the walnut and control groups, respectively.

References

    1. Age-Related Eye Disease Study Research Group (2001). A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AReds report No. 8. Arch. Ophthalmol. 119 1417–1436. 10.1001/archopht.119.10.1417
    1. Alzheimer’s Association (2015). Alzheimer’s disease facts and figures. Alzheimers Dement. 11 332–384. 10.1016/j.jalz.2015.02.003
    1. Amirul Islam F. M., Chong E. W., Hodge A. M., Guymer R. H., Aung K. Z., Makeyeva G. A., et al. (2014). Dietary patterns and their associations with age-related macular degeneration: the Melbourne collaborative cohort study. Ophthalmology 121 1428–1434. 10.1016/j.ophtha.2014.01.002
    1. Barbour J. A., Howe P. R., Buckley J. D., Bryan J., Coates A. M. (2014). Nut consumption for vascular health and cognitive function. Nutr. Res. Rev. 27 131–158. 10.1017/S0954422414000079
    1. Barnes J. L., Tian M., Edens N. K., Morris M. C. (2014). Consideration of nutrient levels in studies of cognitive decline. Nutr. Rev. 72 707–719. 10.1111/nure.12144
    1. Baumgart M., Snyder H. M., Carrillo M. C., Fazio S., Kima H., Johns H. (2015). Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 11 718–726. 10.1016/j.jalz.2015.05.016
    1. Benton A. L., Hamsher K. (1976). Multilingual Aphasia Examination. Iowa City, IA: University of Iowa.
    1. Blondeau N., Nguemeni C., Debruyne D. N., Piens M., Wu X., Pan H., et al. (2009). Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 34 2548–2559. 10.1038/npp.2009.84
    1. Carey A. N., Fisher D. R., Joseph J. A., Shukitt-Hale B. (2013). The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. Nutr. Neurosci. 16 13–20. 10.1179/1476830512Y.0000000023
    1. Conners C. K., Staff M. H. S. (eds) (2000). Conners’ Continuous Performance. (Test)II: Computer Program for Windows Technical Guide and Software Manual. North Tonwanda, NY: Multi-Health Systems.
    1. Cooper C., Li R., Lyketsos C., Livingston G. (2013). Treatment for mild cognitive impairment: systematic review. Br. J. Psychiatry 203 255–264. 10.1192/bjp.bp.113.127811
    1. Dangour A. D., Andreeva V. A., Sydenham E., Uauy R. (2012). Omega 3 fatty acids and cognitive health in older people. Br. J. Nutr. 107 S152–S158. 10.1017/S0007114512001547
    1. Del Rio D., Rodriguez-Mateos A., Spencer J. P., Tognolini M., Borges G., Crozier A. (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18 1818–1892. 10.1089/ars.2012.4581
    1. Del Ser T., González-Montalvo J. I., Martínez-Espinosa S., Delgado-Villapalos C., Bermejo F. (1997). Estimation of premorbid intelligence in Spanish people with the Word Accentuation Test and its application to the diagnosis of dementia. Brain Cogn. 33 343–356. 10.1006/brcg.1997.0877
    1. Devore E. E., Kang J. H., Stampfer M. J., Grodstein F. (2013). The association of antioxidants, and cognition in the Nurses’ Health Study. Am. J. Epidemiol. 177 33–41.
    1. Doménech M., Roman P., Lapetra J., García de la Corte F. J., Sala-Vila A., de la Torre R., et al. (2014). Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: one-year randomized, clinical trial. Hypertension 64 69–76.
    1. Domenichiello A. F., Kitson A. P., Bazinet R. P. (2015). Is docosahexaenoic acid synthesis from alpha-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 59 54–66. 10.1016/j.plipres.2015.04.002
    1. Dyall S. C. (2015). Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 7:52 10.3389/fnagi.2015.00052
    1. Elosua R., Marrugat J., Molina L., Pons S., Pujol E. (1994). Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish men. The MARATHOM Investigators. Am. J. Epidemiol. 139 1197–1209.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M. I., Corella D., Arós F., et al. (2013). Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368 1279–1290. 10.1056/NEJMoa1200303
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. Gao H., Yan P., Zhang S., Nie S., Huang F., Han H., et al. (2016). Chronic alpha-linolenic acid treatment alleviates age-associated neuropathology: roles of PERK/eIF2α signaling pathway. Brain Behav. Immun. 57 314–325. 10.1016/j.bbi.2015.09.012
    1. Grober E., Sliwinski M. (1991). Development and validation of a model for estimating premorbid intelligence in the elderly. J. Clin. Exp. Neuropsychol. 13 933–949. 10.1080/01688639108405109
    1. Hamilton M. (1967). Development of a rating scale for primary depressive illness. Br. J. Soc. Clin. Psychol. 6 278–296. 10.1111/j.2044-8260.1967.tb00530.x
    1. Heneka M. T., Carson M. J., El Khoury J., Landreth G. E., Brosseron F., Feinstein D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14 388–405. 10.1016/S1474-4422(15)70016-5
    1. Hixson J. E., Vernier D. T. (1990). Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hhal. J. Lipid Res. 31 545–548.
    1. Hull H., He Q., Thornton J., Javed F., Allen L., Wang J., et al. (2009). iDXA, Prodigy, and DPXL dual-energy X-ray absorptiometry whole-body scans: a cross-calibration study. J. Clin. Densitom. 12 95–102. 10.1016/j.jocd.2008.09.004
    1. Iqbal K., Liu F., Gong C. X. (2014). Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem. Pharmacol. 88 631–639. 10.1016/j.bcp.2014.01.002
    1. Kaplan E., Goodglass H., Weintraub S. (2001). Boston Naming Test. (Boston Diagnostic Aphasia Examination, BDAE) 2n Edn. Philadelphia, PA: Lippincott Williams & Wilkins.
    1. Khandhadia S., Lotery A. (2010). Oxidation and age-related macular degeneration: insights from molecular biology. Expert. Rev. Mol. Med. 12 e34 10.1017/S146239941000164X
    1. Lim L. S., Mitchell P., Seddon J. M., Holz F. G., Wong T. Y. (2012). Age related macular degeneration. Lancet 379 1728–1738. 10.1016/S0140-6736(12)60282-7
    1. Macready A. L., Kennedy O. B., Ellis J. A., Williams C. M., Spencer J. P., Butler L. T. (2009). Flavonoids and cognitive function: a review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr. 4 227–242. 10.1007/s12263-009-0135-4
    1. Majumdar S., Srirangam R. (2010). Potential of the bioflavonoids in the prevention/treatment of ocular disorders. J. Pharm. Pharmacol. 62 951–965. 10.1211/jpp.62.08.0001
    1. Mancia G., Fagard R., Narkiewicz K., Redón J., Zanchetti A., Böhm M., et al. (2013). 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 31 1281–1357. 10.1097/HJH.0b013e328364ca4c
    1. Martínez-González M. A., Salas-Salvadó J., Estruch R., Corella D., Fitó M., Ros E., et al. (2015). Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog. Cardiovasc. Dis. 58 50–60. 10.1016/j.pcad.2015.04.003
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and services task force on Alzheimer’s Disease. Neurology 34 939–944. 10.1212/WNL.34.7.939
    1. Merle B. M., Delyfer M. N., Korobelnik J. F., Rougier M. B., Malet F., Féart C., et al. (2013). High concentrations of plasma n3 fatty acids are associated with decreased risk for late age-related macular degeneration. J. Nutr. 143 505–511. 10.3945/jn.112.171033
    1. Nooyens A. C., Bueno-de-Mesquita H. B., van Boxtel M. P., van Gelder B. M., Verhagen H., Verschuren W. M. (2011). Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Br. J. Nutr. 106 752–761. 10.1017/S0007114511001024
    1. O’Brien J., Okereke O., Devore E., Rosner B., Breteler M., Grodstein F. (2014). Long-term intake of nuts in relation to cognitive function in older women. J. Nutr. Health Aging 18 496–502. 10.1007/s12603-014-0014-6
    1. OECD. (2014). Unleashing the Power of Big Data for Alzheimer’s Disease and Dementia Research: Main Points of the OECD Expert Consultation on Unlocking Global Collaboration to accelerate Innovation for Alzheimer’s Disease and Dementia. Paris: OECD.
    1. Otaegui-Arrazola A., Amiano P., Elbusto A., Urdaneta E., Martínez-Lage P. (2014). Diet, cognition, and Alzheimer’s disease: food for thought. Eur. J. Nutr. 53 1–23. 10.1007/s00394-013-0561-3
    1. Parisi V., Tedeschi M., Gallinaro G., Varano M., Saviano S., Piermarocchi S., et al. (2008). Carotenoids and antioxidants in age-related maculopathy Italian study. Multifocal electroretinogram modifications after 1 year. Ophthalmology 115 324–333.
    1. Partington J., Leiter R. (1949). Partington’s pathways test. Psychol. Serv. Cent. Bull. 1 11–20.
    1. Petersen R. C., Doody R., Kurz A., Mohs R. C., Morris J. C., Rabins P. V., et al. (2001). Current concepts in mild cognitive impairment. Arch. Neurol. 58 1985–1992. 10.1001/archneur.58.12.1985
    1. Poulose S., Miller M. G., Shukkit-Hale B. (2014). Role of walnuts in maintaining brain health with age. J. Nutr. 144 561S–566S.
    1. Ramier A. M., Hécaen H. (1970). Rôle respectif des atteintes frontales et de la latéralisation lésionnelle dans les déficits de la fluence verbale. Rev. Neurol. 133 571–574.
    1. Rey A. (1941). L’examen psychologique dans les cas d’encephalopathie traumatique. Arch. Psychol. 28 286–340.
    1. Rey A. (1958). L’examen Clinique en Psychologie. Paris: Presses Universitaries de France (PUF).
    1. Ros E., Hu F. B. (2013). Consumption of plant seeds cardiovascular health: epidemiological and clinical trial evidence. Circulation 128 553–565. 10.1161/CIRCULATIONAHA.112.001119
    1. Sala-Vila A., Harris W. S., Cofán M., Pérez-Heras A. M., Pintó X., Lamuela-Raventós R. M., et al. (2011). Determinants of the omega-3 index in a Mediterranean population at increased risk for coronary heart disease. Br. J. Nutr. 106 425–431. 10.1017/S0007114511000171
    1. Sala-Vila A., Romero-Mamani E. S., Gilabert R., Núñez I., de la Torre R., Corella D., et al. (2014). Changes in ultrasound-assessed carotid intima-media thickness and plaque with a Mediterranean diet: a substudy of the PREDIMED Trial. Arterioscler. Thromb. Vasc. Biol. 34 439–445.
    1. Schrag M., Mueller C., Zabel M., Crofton A., Kirsch W. M., Ghribi O., et al. (2013). Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol. Dis. 59 100–110. 10.1016/j.nbd.2013.07.005
    1. Segovia-Siapco G., Singh P., Jaceldo-Siegl K., Sabate J. (2007). Validation of a food-frequency questionnaire for measurement of nutrient intake in a dietary intervention study. Public Health Nutr. 10 177–184. 10.1017/S1368980007226047
    1. Smith A. (1973). Symbol Digit Modalities Test. Manual. Los Angeles, CA: Western Psychological Services.
    1. Solé-Padullés C., Bartrés-Faz D., Junqué C., Vendrell P., Rami L., Clemente I. C., et al. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 30 1114–1124. 10.1016/j.neurobiolaging.2007.10.008
    1. Song P., Chen Y. (2015). Public policy response, aging in place, and big data platforms: creating an effective collaborative system to cope with aging of the population. Biosci. Trends 9 1–6. 10.5582/bst.2015.01025
    1. Spence J. D., Eliasziw M., DiCicco M., Hackam D. G., Galil R., Lohmann T. (2002). Carotid plaque area. A tool for targeting and evaluating vascular preventive therapy. Stroke 33 2916–2922.
    1. Stroop J. R. (1935). Studies of interference in serial verbal reaction. J. Exp. Psychol. 18 6436–6462. 10.1037/h0054651
    1. Tan J. S., Wang J. J., Flood V., Mitchell P. (2009). Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the blue mountains eye study. Arch. Ophthalmol. 127 656–665. 10.1001/archophthalmol.2009.76
    1. Tangney C. C., Li H., Wang Y., Barnes L., Schneider J. A., Bennett D. A., et al. (2014). Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 83 1410–1416. 10.1212/WNL.0000000000000884
    1. Valls-Pedret C., Lamuela-Raventós R. M., Medina-Remón A., Quintana M., Corella D., Pintó X., et al. (2012). Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J. Alzheimers Dis. 29 773–782. 10.3233/JAD-2012-111799
    1. Valls-Pedret C., Sala-Vila A., Serra-Mir M., Corella D., de la Torre R., Martínez-González M. Á., et al. (2015). Mediterranean diet and age related cognitive decline. A randomized clinical trial. JAMA Intern. Med. 175 1094–1103.
    1. Warrington E. K., James M. (1991). Visual Object and Space Perception Battery. Suffolk: Thames Valley Test Co.
    1. Wechsler D. (1997). Wechsler Adult Intelligence Scale (WAIS-III): Administration and Scoring Manual 3rd Edn. San Antonio, TX: The Psychological Corporation.
    1. Willis L. M., Shukitt-Hale B., Cheng V., Joseph J. A. (2009). Dose-dependent effects of walnuts on motor and cognitive function in aged rats. Br. J. Nutr. 101 1140–1144. 10.1017/S0007114508059369
    1. World Health Organization (1985). Energy and Protein Requirements. Geneva: Technical Report Series; 724.

Source: PubMed

3
Abonnieren