Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography

Gaetano Scaramuzzo, Savino Spadaro, Andreas D Waldmann, Stephan H Böhm, Riccardo Ragazzi, Elisabetta Marangoni, Valentina Alvisi, Elena Spinelli, Tommaso Mauri, Carlo Alberto Volta, Gaetano Scaramuzzo, Savino Spadaro, Andreas D Waldmann, Stephan H Böhm, Riccardo Ragazzi, Elisabetta Marangoni, Valentina Alvisi, Elena Spinelli, Tommaso Mauri, Carlo Alberto Volta

Abstract

Background: The pressure-volume (P-V) curve has been suggested as a bedside tool to set mechanical ventilation; however, it reflects a global behavior of the lung without giving information on the regional mechanical properties. Regional P-V (PVr) curves derived from electrical impedance tomography (EIT) could provide valuable clinical information at bedside, being able to explore the regional mechanics of the lung. In the present study, we hypothesized that regional P-V curves would provide different information from those obtained from global P-V curves, both in terms of upper and lower inflection points. Therefore, we constructed pressure-volume curves for each pixel row from non-dependent to dependent lung regions of patients affected by acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS).

Methods: We analyzed slow-inflation P-V maneuvers data from 12 mechanically ventilated patients. During the inflation, the pneumotachograph was used to record flow and airway pressure while the EIT signals were recorded digitally. From each maneuver, global respiratory system P-V curve (PVg) and PVr curves were obtained, each one corresponding to a pixel row within the EIT image. PVg and PVr curves were fitted using a sigmoidal equation, and the upper (UIP) and lower (LIP) inflection points for each curve were mathematically identified; LIP and UIP from PVg were respectively called LIPg and UIPg. From each measurement, the highest regional LIP (LIPrMAX) and the lowest regional UIP (UIPrMIN) were identified and the pressure difference between those two points was defined as linear driving pressure (ΔPLIN).

Results: A significant difference (p < 0.001) was found between LIPrMAX (15.8 [9.2-21.1] cmH2O) and LIPg (2.9 [2.2-8.9] cmH2O); in all measurements, the LIPrMAX was higher than the corresponding LIPg. We found a significant difference (p < 0.005) between UIPrMIN (30.1 [23.5-37.6] cmH2O) and UIPg (40.5 [34.2-45] cmH2O), the UIPrMIN always being lower than the corresponding UIPg. Median ΔPLIN was 12.6 [7.4-20.8] cmH2O and in 56% of cases was < 14 cmH2O.

Conclusions: Regional inflection points derived by EIT show high variability reflecting lung heterogeneity. Regional P-V curves obtained by EIT could convey more sensitive information than global lung mechanics on the pressures within which all lung regions express linear compliance.

Trial registration: Clinicaltrials.gov, NCT02907840 . Registered on 20 September 2016.

Keywords: Acute respiratory failure, acute respiratory distress syndrome; Electrical impedance tomography; Mechanical ventilation; Personalized medicine; Pressure-volume curve.

Conflict of interest statement

Ethics approval and consent to participate

This manuscript is a secondary analysis of data coming from a prospective trial. The study was approved by the ethics committee of the Sant’ Anna Hospital, Ferrara, Italy (Protocol n. 141285).

Consent for publication

Written informed consent was obtained from the patients or their relatives for publication of their individual details. The consent forms are help by the authors and are available for review by the editor-in-chief of this journal.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Example of regional pressure-volume curves. A slow inflation maneuver was recorded simultaneously using electrical impedance tomography and a pneumotachograph. Representative patient (patient # 2, PEEP10 cmH2O)
Fig. 2
Fig. 2
Analysis flow chart
Fig. 3
Fig. 3
Results: regional and global inflection points. Regional inflection points are in gravitational order (row 1 = most non-dependent; row 19 = most dependent). Values are expressed as median and interquartile range. Asterisk denotes different from UIPg (p < 0.05); number sign denotes different from LIPg (p < 0.05)
Fig. 4
Fig. 4
Results: comparison between regionally derived parameters, global inflection points, and location of LIPrMAX and UIPrMIN. a Values expressed as median [IQR] of LIPrMAX, LIPrMIN, LIPrAVE, LIPg, UIPrMAX, UIPrMIN, UIPrAVE, UIPg, and ∆PrLIN. LIPrMAX and UIPrMIN were respectively different from LIPg and UIPg (Mann-Whitney unpaired t test). b Cumulative distribution of UIPrMIN and LIPrMAX position; ROI 1, non-dependent; ROI 1 + n, dependent lung. In 55% of the measurements, the UIPrMIN was positioned within the first five ROIs (non-dependent lung); in 75% of the measurements, the LIPrMAX was positioned within the last five ROIs (dependent lung)

References

    1. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–442. doi: 10.1164/rccm.201605-1081CP.
    1. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110:556–565. doi: 10.1164/arrd.1974.110.5.556.
    1. Spadaro S, Park M, Turrini C, Tunstall T, Thwaites R, Mauri T. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond) 2019;16:1. doi: 10.1186/s12950-018-0202-y.
    1. Tonetti T, Cressoni M, Collino F, Maiolo G, Rapetti F, Quintel M, et al. Volutrauma, atelectrauma, and mechanical power. Crit Care Med. 2017;45:e327–e328. doi: 10.1097/CCM.0000000000002193.
    1. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31:776–784. doi: 10.1007/s00134-005-2627-z.
    1. Grasso S, Stripoli T, Sacchi M, Trerotoli P, Staffieri F, Franchini D, et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med. 2009;180(5):415–423. doi: 10.1164/rccm.200901-0156OC.
    1. Silva PL, Gama de Abreu M. Regional distribution of transpulmonary pressure. Ann Transl Med. 2018;6:385. doi: 10.21037/atm.2018.10.03.
    1. Venegas JG, Harris RS, Simon BA. A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol (1985) 1998;84:389–395. doi: 10.1152/jappl.1998.84.1.389.
    1. Roupie E, Dambrosio M, Servillo G, Mentec H, el Atrous S, Beydon L, et al. Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;152:121–128. doi: 10.1164/ajrccm.152.1.7599810.
    1. Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602.
    1. Pellegrini M, Derosa S, Tannoia A, Rylander C, Fiore T, Larsson A, et al. Effects of superimposed tissue weight on regional compliance of injured lungs. Respir Physiol Neurobiol. 2016;228:16–24. doi: 10.1016/j.resp.2016.03.005.
    1. Victorino JA, Borges JB, Okamoto VN, Matos GFJ, Tucci MR, Caramez MPR, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004;169:791–800. doi: 10.1164/rccm.200301-133OC.
    1. Santini Alessandro, Spinelli Elena, Langer Thomas, Spadaro Savino, Grasselli Giacomo, Mauri Tommaso. Thoracic electrical impedance tomography: an adaptive monitor for dynamic organs. Journal of Emergency and Critical Care Medicine. 2018;2:71–71. doi: 10.21037/jeccm.2018.08.08.
    1. Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195:1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Mauri T, Eronia N, Abbruzzese C, Marcolin R, Coppadoro A, Spadaro S, et al. Effects of sigh on regional lung strain and ventilation heterogeneity in acute respiratory failure patients undergoing assisted mechanical ventilation. Crit Care Med. 2015;43:1823–1831. doi: 10.1097/CCM.0000000000001083.
    1. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Waldmann AD, Wodack KH, März A, Ukere A, Trepte CJ, Böhm SH, Reuter DA. Performance of novel patient interface for electrical impedance tomography applications. J Med Biol Eng. 2017;37:561–566. doi: 10.1007/s40846-017-0264-y.
    1. Spadaro S, Mauri T, Böhm SH, Scaramuzzo G, Turrini C, Waldmann AD, et al. Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Crit Care. 2018;22:26. doi: 10.1186/s13054-017-1931-7.
    1. Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J. Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “occlusion” versus “constant flow” technique. Am J Respir Crit Care Med. 1994;149:19–27. doi: 10.1164/ajrccm/149.2_Pt_2.S19.
    1. Kunst PW, Böhm SH, Vazquez de Anda G, Amato MB, Lachmann B, Postmus PE, et al. Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med. 2000;28:178–183. doi: 10.1097/00003246-200001000-00029.
    1. Hinz J, Moerer O, Neumann P, Dudykevych T, Frerichs I, Hellige G, et al. Regional pulmonary pressure volume curves in mechanically ventilated patients with acute respiratory failure measured by electrical impedance tomography. Acta Anaesthesiol Scand. 2006;50:331–339. doi: 10.1111/j.1399-6576.2006.00958.x.
    1. Beda A, Carvalho AR, Carvalho NC, Hammermüller S, Amato MBP, Muders T, et al. Mapping regional differences of local pressure-volume curves with electrical impedance tomography. Crit Care Med. 2017;45:679–686. doi: 10.1097/CCM.0000000000002233.
    1. Retamal J, Hurtado D, Villarroel N, Bruhn A, Bugedo G, Amato MBP, et al. Does regional lung strain correlate with regional inflammation in acute respiratory distress syndrome during nonprotective ventilation? An experimental porcine study. Crit Care Med. 2018;46:e591–e599. doi: 10.1097/CCM.0000000000003072.
    1. Hickling KG. The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med. 1998;158:194–202. doi: 10.1164/ajrccm.158.1.9708049.
    1. Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;164:131–140. doi: 10.1164/ajrccm.164.1.2007011.
    1. Jain M, Sznajder JI. Bench-to-bedside review: distal airways in acute respiratory distress syndrome. Crit Care Lond Engl. 2007;11:206. doi: 10.1186/cc5159.
    1. Vlahakis NE, Hubmayr RD. Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med. 2005;171:1328–1342. doi: 10.1164/rccm.200408-1036SO.
    1. Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou Y-H, Omary MB, et al. Keratin 8 phosphorylation by protein kinase C delta regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem. 2005;280:30400–30405. doi: 10.1074/jbc.M504239200.
    1. Acute Respiratory Distress Syndrome Network. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Petrucci N, De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013:CD003844. 10.1002/14651858.CD003844.pub4.
    1. Umbrello Michele, Marino Antonella, Chiumello Davide. Tidal volume in acute respiratory distress syndrome: how best to select it. Annals of Translational Medicine. 2017;5(14):287–287. doi: 10.21037/atm.2017.06.51.
    1. Martin-Loeches I, de Haro C, Dellinger RP, Ferrer R, Phillips GS, Levy MM, et al. Effectiveness of an inspiratory pressure-limited approach to mechanical ventilation in septic patients. Eur Respir J. 2013;41:157–164. doi: 10.1183/09031936.00221611.
    1. Slutsky AS. Consensus conference on mechanical ventilation--January 28-30, 1993 at Northbrook, Illinois, USA. Part I. European Society of Intensive Care Medicine, the ACCP and the SCCM. Intensive Care Med. 1994;20(1):64–79. doi: 10.1007/BF02425061.
    1. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639.
    1. Barbas CSV, Palazzo RF. Should we titrate mechanical ventilation based on driving pressure?-yes. Ann Transl Med. 2018;6:393. doi: 10.21037/atm.2018.06.26.
    1. Pelosi P, Ball L. Should we titrate ventilation based on driving pressure? Maybe not in the way we would expect. Ann Transl Med. 2018;6(19):389. doi: 10.21037/atm.2018.09.48.
    1. Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20:276. doi: 10.1186/s13054-016-1446-7.
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Taccone FS, Malfertheiner MV, Ferrari F, Di Nardo M, Swol J, Broman LM, et al. Extracorporeal CO2 removal in critically ill patients: a systematic review. Minerva Anestesiol. 2017;83:762–772. doi: 10.23736/S0375-9393.17.11835-3.

Source: PubMed

3
Abonnieren