Drug repurposing for the treatment of COVID-19

Yuri Kato, Kazuhiro Nishiyama, Akiyuki Nishimura, Takamasa Noda, Kaori Okabe, Takahiro Kusakabe, Yasunari Kanda, Motohiro Nishida, Yuri Kato, Kazuhiro Nishiyama, Akiyuki Nishimura, Takamasa Noda, Kaori Okabe, Takahiro Kusakabe, Yasunari Kanda, Motohiro Nishida

Abstract

Coronavirus disease 2019 (COVID-19) remains prevalent worldwide since its onset was confirmed in Wuhan, China in 2019. Vaccines against the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have shown a preventive effect against the onset and severity of COVID-19, and social and economic activities are gradually recovering. However, the presence of vaccine-resistant variants has been reported, and the development of therapeutic agents for patients with severe COVID-19 and related sequelae remains urgent. Drug repurposing, also called drug repositioning or eco-pharma, is the strategy of using previously approved and safe drugs for a therapeutic indication that is different from their original indication. The risk of severe COVID-19 and mortality increases with advancing age, cardiovascular disease, hypertension, diabetes, and cancer. We have reported three protein-protein interactions that are related to heart failure, and recently identified that one mechanism increases the risk of SARS-CoV-2 infection in mammalian cells. This review outlines the global efforts and outcomes of drug repurposing research for the treatment of severe COVID-19. It also discusses our recent finding of a new protein-protein interaction that is common to COVID-19 aggravation and heart failure.

Keywords: Cardiomyocyte; Eco-pharma; NADPH oxidase; Protein–protein interaction; Transient receptor potential channel.

Conflict of interest statement

Declaration of competing interest The authors declare no conflicts of interest.

Copyright © 2022 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Possible drug discovery targets for developing COVID-19 treatments. PLpro: papain-like protease, CLPro: 3-chymotrypsin-like protease (main protease), ACE2: angiotensin-converting enzyme 2, TMPRSS2: transmembrane protease, serine 2.
Fig. 2
Fig. 2
Protein–protein interactions in pathological cardiovascular tissue that could be targets of drug repurposing efforts. TRPC3: transient receptor potential canonical subfamily member 3, Nox2: NADPH oxidase, P2Y6R: purinergic P2Y6 receptor, AT1R: angiotensin II type 1 receptor, Drp1: dynamin-related protein 1.
Fig. 3
Fig. 3
Risk factor-induced TRPC3–Nox2 complex formation mediates COVID-19 aggravation. ARDS: acute respiratory distress syndrome.

References

    1. Zhu N., Zhang D., Wang W., et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473.
    1. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–452.
    1. Li W., Moore M.J., Vasilieva N., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e278.
    1. Jackson C.B., Farzan M., Chen B., Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20.
    1. Madjid M., Safavi-Naeini P., Solomon S.D., Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5(7):831–840.
    1. Gao Y.D., Ding M., Dong X., et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76(2):428–455.
    1. Silva Andrade B., Siqueira S., de Assis Soares W.R., et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021;13(4)
    1. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516–527.
    1. Plante J.A., Liu Y., Liu J., et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021;592(7852):116–121.
    1. Davies N.G., Abbott S., Barnard R.C., et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538)
    1. Nonaka C.K.V., Franco M.M., Gräf T., et al. Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg Infect Dis. 2021;27(5):1522–1524.
    1. Tegally H., Wilkinson E., Giovanetti M., et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592(7854):438–443.
    1. Karim S.S.A., Karim Q.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021;398(10317):2126–2128.
    1. Smyth D.S., Trujillo M., Gregory D.A., et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat Commun. 2022;13(1):635.
    1. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481.
    1. Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422.
    1. Li X., Xu S., Yu M., et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–118.
    1. Zhang L., Zhu F., Xie L., et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2020;31(7):894–901.
    1. Guo W., Li M., Dong Y., et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020:e3319.
    1. Wang B., Li R., Lu Z., Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY) 2020;12(7):6049–6057.
    1. Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45.
    1. Hikmet F., Mear L., Edvinsson A., Micke P., Uhlen M., Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7)
    1. Perez-Bermejo J.A., Kang S., Rockwood S.J., et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci Transl Med. 2021;13(590)
    1. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097–1100.
    1. Tavazzi G., Pellegrini C., Maurelli M., et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22(5):911–915.
    1. Bojkova D., Wagner J.U.G., Shumliakivska M., et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020;116(14):2207–2215.
    1. Pinto B.G.G., Oliveira A.E.R., Singh Y., et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis. 2020;222(4):556–563.
    1. Horowitz J.E., Kosmicki J.A., Damask A., et al. Genome-wide analysis in 756,646 individuals provides first genetic evidence that ACE2 expression influences COVID-19 risk and yields genetic risk scores predictive of severe disease. medRxiv. 2021 doi: 10.1101/2020.12.14.20248176.
    1. Lindner D., Fitzek A., Brauninger H., et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–1285.
    1. Inoue K. Relational study of pain: activated microglia and P2X4 in neuropathic pain signaling. PAIN RESEARCH. 2007;22(4):163–169.
    1. . . Accessed 27 febrary 2022.
    1. Rosa S.G.V., Santos W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Públic. 2020;44:e40.
    1. Singh T.U., Parida S., Lingaraju M.C., Kesavan M., Kumar D., Singh R.K. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479–1508.
    1. Cavalli G., Farina N., Campochiaro C., et al. Repurposing of biologic and targeted synthetic anti-rheumatic drugs in COVID-19 and hyper-inflammation: a comprehensive review of available and emerging evidence at the peak of the pandemic. Front Pharmacol. 2020;11:598308.
    1. Luo L., Qiu Q., Huang F., et al. Drug repurposing against coronavirus disease 2019 (COVID-19): a review. J Pharm Anal. 2021;11(6):683–690.
    1. Sultana J., Crisafulli S., Gabbay F., Lynn E., Shakir S., Trifirò G. Challenges for drug repurposing in the COVID-19 pandemic era. Front Pharmacol. 2020;11:588654.
    1. Tripathy S., Dassarma B., Roy S., Chabalala H., Matsabisa M.G. A review on possible modes of action of chloroquine/hydroxychloroquine: repurposing against SAR-CoV-2 (COVID-19) pandemic. Int J Antimicrob Agents. 2020;56(2):106028.
    1. Tchesnokov E.P., Feng J.Y., Porter D.P., Götte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11(4)
    1. Furuta Y., Takahashi K., Kuno-Maekawa M., et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 2005;49(3):981–986.
    1. Gibo J., Ito T., Kawabe K., et al. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab Invest. 2005;85(1):75–89.
    1. Hoffmann M., Schroeder S., Kleine-Weber H., Müller M.A., Drosten C., Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother. 2020;64(6)
    1. Chandwani A., Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Therapeut Clin Risk Manag. 2008;4(5):1023–1033.
    1. Agarwal S., Agarwal S.K. Lopinavir-ritonavir in SARS-CoV-2 infection and drug-drug interactions with cardioactive medications. Cardiovasc Drugs Ther. 2021;35(3):427–440.
    1. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res. 2020;178:104787.
    1. Sharun K., Tiwari R., Dhama J., Dhama K. Dexamethasone to combat cytokine storm in COVID-19: clinical trials and preliminary evidence. Int J Surg. 2020;82:179–181.
    1. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28:583–590.
    1. Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592.
    1. Samavati L., Uhal B.D. ACE2, much more than just a receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10:317.
    1. Yeung M.L., Teng J.L.L., Jia L., et al. Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell. 2021;184(8):2212–2228. e2212.
    1. Nishida M., Kurose H. Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmiedeberg’s Arch Pharmacol. 2008;378(4):395–406.
    1. Kitajima N., Numaga-Tomita T., Watanabe M., et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci Rep. 2016;6:37001.
    1. Shimauchi T., Numaga-Tomita T., Ito T., et al. TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy. JCI Insight. 2017;2(15)
    1. Sudi S.B., Tanaka T., Oda S., et al. TRPC3-Nox2 axis mediates nutritional deficiency-induced cardiomyocyte atrophy. Sci Rep. 2019;9(1):9785.
    1. Nishiyama K., Numaga-Tomita T., Fujimoto Y., et al. Ibudilast attenuates doxorubicin-induced cytotoxicity by suppressing formation of TRPC3 channel and NADPH oxidase 2 protein complexes. Br J Pharmacol. 2019;176(18):3723–3738.
    1. Nishimura A., Sunggip C., Tozaki-Saitoh H., et al. Purinergic P2Y6 receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II-induced hypertension. Sci Signal. 2016;9(411):ra7.
    1. Nishiyama K., Nishimura A., Shimoda K., et al. Redox-dependent internalization of the purinergic P2Y(6) receptor limits colitis progression. Sci Signal. 2022;15(716)
    1. Nishimura A., Shimauchi T., Tanaka T., et al. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal. 2018;11(556)
    1. Nishimura A., Shimoda K., Tanaka T., et al. Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload. Sci Signal. 2019;12(587)
    1. Lu J., Hou Y., Ge S., et al. Screened antipsychotic drugs inhibit SARS-CoV-2 binding with ACE2 in vitro. Life Sci. 2021;266:118889.
    1. Adamo C.M., Dai D.F., Percival J.M., et al. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA. 2010;107(44):19079–19083.
    1. Reis G., Dos Santos Moreira-Silva E.A., Silva D.C.M., et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Global Health. 2022;10(1):e42–e51.
    1. Fujita R., Hino M., Ebihara T., et al. Efficient production of recombinant SARS-CoV-2 spike protein using the baculovirus-silkworm system. Biochem Biophys Res Commun. 2020;529(2):257–262.
    1. Kato Y., Yamada S., Nishiyama K., et al. Clomipramine suppresses ACE2-mediated SARS-CoV-2 entry. bioRxiv. 2021 doi: 10.1101/2021.03.13.435221.
    1. Kang Y.L., Chou Y.Y., Rothlauf P.W., et al. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117(34):20803–20813.
    1. Ou X., Liu Y., Lei X., et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620.
    1. Liu T., Luo S., Libby P., Shi G.P. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Ther. 2020;213:107587.
    1. Padmanabhan P., Desikan R., Dixit N.M. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput Biol. 2020;16(12)
    1. Kreuzberger N., Hirsch C., Chai K.L., et al. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. Cochrane Database Syst Rev. 2021;9(9)
    1. Jayk Bernal A., Gomes da Silva M.M., Musungaie D.B., et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–520.
    1. Mahase E. Covid-19: pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ. 2021;375:n2713.
    1. Harris R.J., Hall J.A., Zaidi A., Andrews N.J., Dunbar J.K., Dabrera G. Effect of vaccination on household transmission of SARS-CoV-2 in england. N Engl J Med. 2021;385(8):759–760.
    1. Levine-Tiefenbrun M., Yelin I., Katz R., et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat Med. 2021;27(5):790–792.
    1. Buchan S.A., Chung H., Brown K.A., et al. Effectiveness of COVID-19 vaccines against Omicron or Delta symptomatic infection and severe outcomes. medRxiv. 2022 doi: 10.1101/2021.12.30.21268565.
    1. Cele S., Jackson L., Khan K., et al. SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. medRxiv. 2021 doi: 10.1101/2021.12.08.21267417.
    1. Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615.

Source: PubMed

3
Abonnieren