Developing and Establishing Biomechanical Variables as Risk Biomarkers for Preventable Gait-Related Falls and Assessment of Intervention Effectiveness

Mark D Grabiner, K R Kaufman, Mark D Grabiner, K R Kaufman

Abstract

The purpose of this review is to position the emerging clinical promise of validating and implementing biomechanical biomarkers of falls in fall prevention interventions. The review is framed in the desirability of blunting the effects of the rapidly growing population of older adults with regard to the number of falls, their related injuries, and health care costs. We propose that biomechanical risk biomarkers may be derived from systematic study of the responses to treadmill-delivered perturbations to both identify individuals with a risk of specific types of falls, such as trips and slips as well as quantifying the effectiveness of interventions designed to reduce that risk. The review follows the evidence derived using a specific public health approach and the published biomedical literature that supports trunk kinematics as a biomarker as having met many of the criteria for a biomarker for trip-specific falls. Whereas, the efficacy of perturbation training to reduce slip-related falls by older adults appears to have been confirmed, its effectiveness presently remains an open and important question. There is a dearth of data related to the efficacy and effectiveness of perturbation training to reduce falls to the side falls by older adults. At present, efforts to characterize the extent to which perturbation training can reduce falls and translate the approaches to the clinic represents an important research opportunity.

Keywords: injury; intervention; perturbation training; prevention; risk factors.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Grabiner and Kaufman.

Figures

Figure 1
Figure 1
The total encircled area represents all-cause falls by all older adults. The white area represents all-cause falls by independent community dwelling older adults, who represent 95% of older adults in the United States (Administration on Aging, , http://www.aoa.gov/Aging_Statistics/Profile/2012/docs/2012profile.pdf). The dotted area represents all-cause falls by older adults living in assisted living facilities. Direction-specific gait-related falls are a subset of all-cause falls. Slips and trips, direction-specific falls, that occur both in and outside the home, may generally account for about 50% gait-related falls by independent community-dwelling older adults (Berg et al., ; Crenshaw et al., 2017). A substantial number of falls by independent community-dwelling older adults are laterally-directed (Crenshaw et al., 2017). Because laterally-directed falls may have recovery solutions that involve stepping responses, the percentage of preventable direction-specific gait-related falls is increased. Of these gait-related falls, some proportion leads to injury, both minor and serious, the latter of which can be life-threatening. Of these direction-specific gait-related falls by independent community-dwelling older adults, some are demonstrably preventable through various clinical interventions. The hatched area at the intersection of injurious falls, direction-specific gait-related falls. and preventable, direction-specific gait-related falls represents out target for perturbation-based intervention.

References

    1. Administration on Aging (2012). A Profile of Older Adults. Available online at: (accessed September 2, 2021).
    1. Allin L. J., Brolinson P. G., Beach B. M., Kim S., Nussbaum M. A., Roberto K. A., et al. . (2020). Perturbation-based balance training targeting both slip- and trip-induced falls among older adults: a randomized controlled trial. BMC Geriatr. 20:205. 10.1186/s12877-020-01605-9
    1. Aronson J. K. (2005). Biomarkers and surrogate endpoints. Br. J. Clin. Pharmacol. 59, 491–494. 10.1111/j.1365-2125.2005.02435.x
    1. Avils J., Allin L. J., Alexander N. B., VanMullekom J. V., Nussbaum M. A., Madigan M. L. (2019). Comparison of treadmill trip-like training versus Tai Chi to improve reactive balance among independent older adult residents of senior housing: a pilot controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1497–1503. 10.1093/gerona/glz018
    1. Beauchet O., Allali G., Launay C., Herrmann F. R., Annweiler C. (2013). Gait variability at fast-pace walking speed: a biomarker of mild cognitive impairment? J. Nutr. Health Aging. 17, 235–239. 10.1007/s12603-012-0394-4
    1. Beauchet O., Fantino B., Allawi G., Muir S. W., Montero-Odassa M., Annweiler C. (2011). Timed up and go test and risk of falls in older adults: a systematic review. J. Nutr. Health Aging. 15, 933–938. 10.1007/s12603-011-0062-0
    1. Berg W. P., Allessio H. M., Mills E. M., Tong C. (1997). Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing. 26, 261–268. 10.1093/ageing/26.4.261
    1. Bergen G., Stevens M. R., Burns E. R. (2016). Falls and fall injuries among adults aged 65 years - United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 65, 993–998. 10.15585/mmwr.mm6537a2
    1. Brodie M. A., Lovell N. H., Canning C. G., Menz H. B., Delbaere K., Redmond S. J., et al. . (2014). Gait as a biomarker? Accelerometers reveal that reduced movement quality while walking is associated with Parkinson's disease, aging and fall risk. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014, 5968–5971. 10.1109/EMBC.2014.6944988
    1. Burns E. R., Stevens J. A. (2016). The direct costs of fatal and non-fatal falls among older adults - United States. J. Safety Res. 58, 99–103. 10.1016/j.jsr.2016.05.001
    1. Campbell A. J., Reinken J., Allan B. C., Martinez G. S. (1981). Falls in old age: a study of frequency and related clinical factors. Age Ageing. 10, 264–270. 10.1093/ageing/10.4.264
    1. Centers for Disease Control Prevention (2018). Available online at: (accessed October 12, 2018).
    1. Centers for Medicare Medicaid Services (2019). Annual Report of the Boards of Trustees of the Federal Hospital Insurance and Federal Supplementary Medical Insurance Trust Funds. Available online at: (accessed September 2, 2021).
    1. Clarke T. C., Norris T., Schiller J. S. (2017). Early Release of Selected Estimates Based on Data From 2016. National Health Interview Survey. National Center for Health Statistics. Available online at: (accessed September 2, 2021).
    1. Colby S. L., Ortman J. M. (2014). Projections of the Size and Composition of the U.S. Population: 2014 to 2060. Current Population Reports, P25-1143. Washington, DC: U.S. Census Bureau.
    1. Crenshaw J. R., Bernhardt K. A., Achenbachc S. J., Atkinsonc E. J., Khoslad S., Kaufman K. R., et al. . (2017). The circumstances, orientations, and impact locations of falls in community-dwelling older women. Arch. Gerontol. Geriatr. 73, 240–247. 10.1016/j.archger.2017.07.011
    1. Decullier E., Couris C. M., Beauchet O., Zamora A., Annweiller C., Dargent-Molina P., et al. . (2010). Falls' and fallers' profiles. J. Nutr. Health Aging 14, 602–608. 10.1007/s12603-010-0130-x
    1. Dijkstra B. W., Horak F. B., Kamsma Y. P. T., Peterson D. S. (2015). Older adults can improve compensatory stepping with repeated postural perturbations. Front. Aging Neurosci. 7, 201. 10.3389/fnagi.2015.00201
    1. FDA-NIH Biomarker Working Group (2016). BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring, MD: Food and Drug Administration (US); Bethesda, MD: National Institutes of Health (US).
    1. Fedak K. M., Bernal A., Capshaw Z. A., Gross S. (2015). Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg. Themes Epidemiol. 12, 14. 10.1186/s12982-015-0037-4
    1. Ferlini A., Scotton C., Novelli G. (2013). Biomarkers in rare diseases. Publ. Health Genom. 16, 313–321. 10.1159/000355938
    1. Foucher K. C., Pater M. L., Grabiner M. D. (2020). Task-specific perturbation training improves the recovery stepping responses by women with knee osteoarthritis following laboratory-induced trips. J. Orthop. Res. 38, 663–669. 10.1002/jor.24505
    1. Gates S., Smith L. A., Fisher J. D., Lamb S. E. (2008). Systematic review of accuracy of screening instruments for predicting fall risk among independently living older adults. J. Rehabil. Res. Dev. 45, 1105–1116. 10.1682/JRRD.2008.04.0057
    1. Grabiner M. D., Crenshaw J. R., Hurt C. P., Rosenblatt N. J., Troy K. L. (2014). Exercise-based fall prevention: can you be a bit more specific? Exerc. Sport Sci. Rev. 42, 161–168. 10.1249/JES.0000000000000023
    1. Grabiner M. D., Feuerbach J. W., Jahnigen D. W. (1996). Measures of paraspinal muscle performance do not predict initial trunk kinematics after tripping. J. Biomech. 29, 735–744. 10.1016/0021-9290(95)00142-5
    1. Grabiner M. D., Koh T. J., Lundin T., Jahnigen D. W. (1993). Kinematics of recovery from a stumble, J Gerontol. 48, M97–102. 10.1093/geronj/48.3.M97
    1. Grabiner M. D., Marone J., Gatts S., Bareither M. L., Troy K. L. (2012). Task-specific training reduces trip-related fall risk in women. Med. Sci. Sports Exerc. 44, 2410–2414. 10.1249/MSS.0b013e318268c89f
    1. Healthy People (2030). Available online at:
    1. Henry F. M. (1968). Specificity vs. generality in learning motor skill, in Classical Studies on Physical Activity, eds R. C. Brwon, and G. S. Kenyon (Englewood Cliffs, NJ: Prentice Hall; ), 331–340.
    1. Hicks G. E. (2019). Addressing balance, mobility and falls: are we moving the needle on fall-prevention? J. Gerontol. A Biol. Sci. Med. Sci. 74, 1487–1488. 10.1093/gerona/glz064
    1. Hill A. B. (1965). The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300. 10.1177/003591576505800503
    1. Hill K., Schwarz J., Flicker L., Carroll S. (1999). Falls among healthy community-dwelling, older women: a prospective study of frequency, circumstances, consequences and prediction accuracy. Aust. N. Z. J. Public Health. 23, 41–48. 10.1111/j.1467-842X.1999.tb01203.x
    1. Hilliard M. J., Martinez K. M., Janssen I., Edwards B., Mille M. L., Zhang Y., et al. . (2008). Lateral balance factors predict future falls in community-living older adults. Arch. Phys. Med. Rehabil. 89, 1708–1713. 10.1016/j.apmr.2008.01.023
    1. Hof A. L., Gazendam M. G., Sinke W. E. (2005). The condition for dynamic stability. J. Biomech. 38, 1–8. 10.1016/j.jbiomech.2004.03.025
    1. Honeycutt C. F., Nevisipur M., Grabiner M. D. (2016). Characteristics and adaptive strategies linked with falls in stroke survivors from analysis of laboratory-induced falls. J. Biomech. 49, 3313–3319. 10.1016/j.jbiomech.2016.08.019
    1. Horak F. B., Mancini M. (2013). Objective biomarkers of balance and gait for parkinson's disease using body-worn sensors. Mov. Disord. 28, 1544–1551. 10.1002/mds.25684
    1. Hurt C. P., Rosenblatt N. J., Grabiner M. D. (2011). Form of the compensatory stepping response to repeated laterally directed postural disturbances. Exp. Brain Res. 214, 557–566. 10.1007/s00221-011-2854-1
    1. Inam S., Vucic S., Brodaty N. E., Zoing M. C., Kiernan M. C. (2010). The 10-metre gait speed as a functional biomarker in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 11, 558–561. 10.3109/17482961003792958
    1. Karamanidis K., Epro G., McCrum C., Konig M. (2020). Improving trip- and slip-resisting skills in older people: perturbation dose matters. Exerc. Sport Sci. Rev. 48, 40–47. 10.1249/JES.0000000000000210
    1. Kaufman K. R., Wyatt M. P., Sessoms P. H., Grabiner M. D. (2014). Task-specific fall prevention training is effective for warfighters with transtibial amputations. Clin. Orthop. Relat. Res. 472, 3076–3084. 10.1007/s11999-014-3664-0
    1. König M., Epro G., Seeley J., Potthast W., Karamanidis K. (2019). Retention and generalizability of balance recovery response adaptations from trip perturbations across the adult life span. J. Neurophysiol. 122, 1884–1893. 10.1152/jn.00380.2019
    1. Lee A., Bhatt T., Liu X., Wang Y., Pai Y. C. (2018). Can higher training practice dosage with treadmill slip-perturbation necessarily reduce risk of falls following overground slip? Gait Posture. (2018). 61, 387–392. 10.1016/j.gaitpost.2018.01.037
    1. Martelli D., Kang J., Agrawal S. K. (2017). A single session of perturbation-based gait training with the A-TPAD improves dynamic stability in healthy young subjects. IEEE Int. Conf. Rehabil. Robot. 2017, 479–484. 10.1109/ICORR.2017.8009294
    1. Mercy J. A., Rosenberg M. L., Powell K. E., Broome C. V., Roper W. L. (1993). Public health policy for preventing violence. Health Aff. (Millwood) Winter. 12, 7–29. 10.1377/hlthaff.12.4.7
    1. Mezghani N., Ouakrim Y., Fuentes A., Mitiche A., Hagemeister N., Vendittoli P. A., et al. . (2017). Mechanical biomarkers of medial compartment knee osteoarthritis diagnosis and severity grading: discovery phase. J. Biomech. 52, 106–112. 10.1016/j.jbiomech.2016.12.022
    1. Micheel C. M., Ball J. R. (eds.). (2010). Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease. Washington, DC: Committee on Qualification of Biomarkers and Surrogate Endpoints in Chronic Disease; Board on Health Care Services; Board on Health Sciences Policy; Food and Nutrition Board; Institute of Medicine, National Academies Press.
    1. Mille M. L., Hilliard M. J., Martinez K. M., Zhang Y., Edwards B. J., Rogers M. W. (2013). One step, two steps, three steps more …directional vulnerability to falls in community-dwelling older people. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1540–1548. 10.1093/gerona/glt062
    1. Montero-Odasso M. M., Sarquis-Adamson Y., Speechley M., Borrie M. J., Hachinski V. C., Wells J., et al. . (2017). Association of dual-task gait with incident dementia in mild cognitive impairment: Results from the gait and brain study. JAMA Neurol. 74, 857–865. 10.1001/jamaneurol.2017.0643
    1. Muir S. W., Berg K., Chesworth B., Klar N., Speechley M. (2010). Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults; a systematic review and meta-analysis. J. Clin. Epidemiol. 63, 389–406. 10.1016/j.jclinepi.2009.06.010
    1. Okubo Y., Sturnieks D. L., Brodie M. A., Duran L., Lord S. R. (2019). Effect of reactive balance training involving repeated slips and trips on balance recovery among older adults: a blinded randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1489–1496. 10.1093/gerona/glz021
    1. Oludare S. O., Pater M. L., Rosenblatt N. J., Grabiner M. D. (2018). Trip-specific training enhances recovery after large postural disturbances for which there is NO expectation. Gait Posture 61, 382–386. 10.1016/j.gaitpost.2018.02.001
    1. Omaña H., Bezaire K., Brady K., Dacvies J., Louwagie N., Power S., et al. . (2021). Functional reach test, single leg stance, and Tinetti Performance-Oriented Mobility Assessment for the prediction of falls in older adults: a systematic review. Phys. Ther. Rehab. J. 10.1093/ptj/pzab173
    1. Ortman J. M., Velkoff V. A., Hogan H. (2014). An Aging Nation: The Older Population in the United States: Population Estimates and Projections U.S. Department of Commerce Economics and Statistics Administration, United States Census Bureau, Report Number P25-1140. Available online at:
    1. Owings T. M., Pavol M. J., Grabiner M. D. (2001). Mechanisms of failed recovery following postural perturbations on a motorized treadmill mimic those associated with an actual forward trip. Clin. Biomech. 16, 813–819. 10.1016/S0268-0033(01)00077-8
    1. Pai Y.-C., Bhatt T., Yang F., Wang E. (2014b). Perturbation training can reduce community-dwelling older adults' annual fall risk: randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 69, 1586–1594. 10.1093/gerona/glu087
    1. Pai Y. C., Bhatt T., Wang E., Espy D., Pavol M. J. (2010). Inoculation against falls: rapid adaptation by young and older adults to slips during daily activities. Arch. Phys. Med. Rehabil. 91, 452–459. 10.1016/j.apmr.2009.10.032
    1. Pai Y. C., Yang F., Bhatt T., Wang E. (2014a). Learning from laboratory-induced falling: long-term motor retention among older adults. Age (Dordr). 36, 9640. 10.1007/s11357-014-9640-5
    1. Pater M. L., Rosenblatt N. J., Grabiner M. D. (2016). Knee osteoarthritis negatively affects the recovery step following large forward-directed postural perturbations. J. Biomech. 49, 1128–1133. 10.1016/j.jbiomech.2016.02.048
    1. Pavol M. J., Owings T. M., Foley K. T., Grabiner M. D. (2001). Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 56, M428–M437. 10.1093/gerona/56.7.M428
    1. Prudham D., Evans J. G. (1981). Factors associated with falls in the elderly. Age Ageing. 10, 141–146. 10.1093/ageing/10.3.141
    1. Rieger M. M., Papegaaij S., Steenbrink F., et al. . (2020). Perturbation-based gait training to improve daily life gait stability in older adults at risk of falling: protocol for the REACT randomized controlled trial. BMC Geriatr. 20, 167. 10.1186/s12877-020-01566-z
    1. Robinovitch S. N., Feldman F., Yang Y., Schonnop R., Lueng P. M., Sarraf T., et al. . (2013). Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 381, 47–54. 10.1016/S0140-6736(12)61263-X
    1. Rogers M. W., Creath R. A., Gray V., Abarro J., McCombe Waller S., Beamer B. A., et al. . (2021). Comparison of lateral perturbation-induced step training and hip muscle strengthening exercise on balance and falls in community dwelling older adults: a blinded randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 76, e194–e202. 10.1093/gerona/glab017
    1. Rosenblatt N. J., Marone J., Grabiner M. D. (2013). Preventing trip-related falls by community-dwelling adults: a prospective study. J. Am. Geriatr. Soc. 61, 1629–1631. 10.1111/jgs.12428
    1. Rubenstein L. Z., Josephson K. R. (2002). The epidemiology of falls and syncope. Clin. Geriatr. Med. 18, 141–158. 10.1016/S0749-0690(02)00002-2
    1. Rydwik E., Bergland A., Forsén L., Frändin K. (2011). Psychometric properties of timed up and go in elderly people: a systematic review. Phys. Occup. Ther. Geriatr. 29, 102–125. 10.3109/02703181.2011.564725
    1. Schoene D., Wu S., Mikolaizak A. S., Menant J. C., Smith S. T., Delbaere K., et al. . (2013). Discriminative ability and predictive ability of the timed up and go test in identifying older people who fall: systematic review and meta-analysis. J. Am. Geriatr. Soc. 61, 202–208. 10.1111/jgs.12106
    1. Scott V., Votova K., Scanlan A., Close J. (2007). Multifactorial and functional mobility assessment tools for fall risk among older adults in community, home support, long term and acute care settings. Age Ageing. 36, 130–139. 10.1093/ageing/afl165
    1. Sheldon J. H. (1960). On the natural history of falls in old age. Br. Med. J. 2, 1685–1690. 10.1136/bmj.2.5214.1685
    1. Sherrington C., Fairhall N. J., Wallbank G. K., Tiedemann A., Michale Z. A., Howard K., et al. . (2019). Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 1, CD012424. 10.1002/14651858.CD012424.pub2
    1. Singal A. G., Higgins P. D. R., Waljee A. K. (2014). A primer on effectiveness and efficacy trials. Clin. Transl. Gastroenterol. 5, e45. 10.1038/ctg.2013.13
    1. Smulders E., Enkelaar L., Weerdesteyn V., Geurts A. C. H., van Schrojenstein Lantman-deValk H. (2013). falls in older adults with intellectual disabilities: fall rate, circumstances and consequences. J. Intellect. Disabil. Res. 57, 1173–1182. 10.1111/j.1365-2788.2012.01643.x
    1. Stevens J. A., Baldwin G. T., Ballesteros M. F., Noonan R. K., Sleet D. A. (2010). An older adults research agenda from a public health perspective. Clin. Geriatr. Med. 26, 767–779. 10.1016/j.cger.2010.06.006
    1. Stevens J. A., Burns E. (2015). Compendium of Effective Fall Interventions: What Works for Community-Dwelling Older Adults. 3rd Edn. Atlanta GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.
    1. Stevens J. A., Mahoney J. E., Ehrenreich H. (2014). Circumstances and outcomes of falls among high risk community dwelling older adults. Inj. Epidemiol. 1, 5. 10.1186/2197-1714-1-5
    1. Tajeu G., Delzell E., Smith W., Arora T., Curtis J. R., Saag K. G., et al. . (2014). Death, debility, and destitution following hip fracture. J. Gerontol. A Biol. Sci. Med. Sci. 69A, 346–53. 10.1093/gerona/glt105
    1. Talbot L. A., Musiol R. J., Witham E. K., Metter E. J. (2005). Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury. BMC Public Health. 5, 86. 10.1186/1471-2458-5-86
    1. Tinetti M. E., Speechley M., Ginter S. F. (1988). Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 319, 1701–1707. 10.1056/NEJM198812293192604
    1. Tricco A. C., Thomas S. M., Veroniki A. A., Hamid J. S., Cogo E., Strifler L., et al. . (2017). Comparisons of interventions for preventing falls in older adults a systematic review and meta-analysis. AMA. 318, 1687–1699. 10.1001/jama.2017.15006
    1. Troy K. L., Donovan S. J., Marone J. R., Bareither M. L., Grabiner M. D. (2008). Identifying modifiable performance domain risk-factors that cause slip-related falls. Gait Post. 28, 461–465. 10.1016/j.gaitpost.0.2008.02.008
    1. U.S. Bureau of the Census (1996). Current Population Reports, Special Studies, P23-190, 65+ in the United States. Washington, DC: U.S. Government Printing Office.
    1. Varma V. R., Ghosal R., Hillel I., Volfson D., Weiss J., Urbanek J., et al. . (2021). Continuous gait monitoring discriminates community-dwelling mild Alzheimer's disease from cognitively normal controls. Alzheimers Dement. 7, e12131. 10.1002/trc2.12131
    1. Verghese J., Ayers E. (2017). Biology of falls: preliminary cohort study suggesting a possible role for oxidative stress. J Am Geriatr Soc. 65, 1306–1309. 10.1111/jgs.14822
    1. Wang Y., Bhatt T., Liu X., Wang S., Lee A., Wang E., et al. . (2019). Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults? J. Biomech. 84, 58–66. 10.1016/j.jbiomech.2018.12.017

Source: PubMed

3
Abonnieren