Diagnostic accuracy of cardiovascular magnetic resonance strain analysis and atrial size to identify heart failure with preserved ejection fraction

Ming-Yen Ng, Chi Ting Kwan, Pui Min Yap, Sau Yung Fung, Hok Shing Tang, Wan Wai Vivian Tse, Cheuk Nam Felix Kwan, Yin Hay Phoebe Chow, Nga Ching Yiu, Yung Pok Lee, Ambrose Ho Tung Fong, Subin Hwang, Zachary Fai Wang Fong, Qing-Wen Ren, Mei-Zhen Wu, Eric Yuk Fai Wan, Ka Chun Kevin Lee, Chun Yu Leung, Andrew Li, David Montero, Varut Vardhanabhuti, JoJo Hai, Chung-Wah Siu, Hung-Fat Tse, Dudley John Pennell, Raad Mohiaddin, Roxy Senior, Kai-Hang Yiu, Ming-Yen Ng, Chi Ting Kwan, Pui Min Yap, Sau Yung Fung, Hok Shing Tang, Wan Wai Vivian Tse, Cheuk Nam Felix Kwan, Yin Hay Phoebe Chow, Nga Ching Yiu, Yung Pok Lee, Ambrose Ho Tung Fong, Subin Hwang, Zachary Fai Wang Fong, Qing-Wen Ren, Mei-Zhen Wu, Eric Yuk Fai Wan, Ka Chun Kevin Lee, Chun Yu Leung, Andrew Li, David Montero, Varut Vardhanabhuti, JoJo Hai, Chung-Wah Siu, Hung-Fat Tse, Dudley John Pennell, Raad Mohiaddin, Roxy Senior, Kai-Hang Yiu

Abstract

Aims: Heart failure with preserved ejection fraction (HFpEF) continues to be a diagnostic challenge. Cardiac magnetic resonance atrial measurement, feature tracking (CMR-FT), tagging has long been suggested to diagnose HFpEF and potentially complement echocardiography especially when echocardiography is indeterminate. Data supporting the use of CMR atrial measurements, CMR-FT or tagging, are absent. Our aim is to conduct a prospective case-control study assessing the diagnostic accuracy of CMR atrial volume/area, CMR-FT, and tagging to diagnose HFpEF amongst patients suspected of having HFpEF.

Methods and results: One hundred and twenty-one suspected HFpEF patients were prospectively recruited from four centres. Patients underwent echocardiography, CMR, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements within 24 h to diagnose HFpEF. Patients without HFpEF diagnosis underwent catheter pressure measurements or stress echocardiography to confirm HFpEF or non-HFpEF. Area under the curve (AUC) was determined by comparing HFpEF with non-HFpEF patients. Fifty-three HFpEF (median age 78 years, interquartile range 74-82 years) and thirty-eight non-HFpEF (median age 70 years, interquartile range 64-76 years) were recruited. Cardiac magnetic resonance left atrial (LA) reservoir strain (ResS), LA area index (LAAi), and LA volume index (LAVi) had the highest diagnostic accuracy (AUCs 0.803, 0.815, and 0.776, respectively). Left atrial ResS, LAAi, and LAVi had significantly better diagnostic accuracy than CMR-FT left ventricle (LV)/right ventricle (RV) parameters and tagging (P < 0.01). Tagging circumferential and radial strain had poor diagnostic accuracy (AUC 0.644 and 0.541, respectively).

Conclusion: Cardiac magnetic resonance LA ResS, LAAi, and LAVi have the highest diagnostic accuracy to identify HFpEF patients from non-HFpEF patients amongst clinically suspected HFpEF patients. Cardiac magnetic resonance feature tracking LV/RV parameters and tagging had low diagnostic accuracy to diagnose HFpEF.

Keywords: Cardiac magnetic resonance; Feature tracking; Heart failure with preserved ejection fraction; Left atrium; Strain; Tagging.

© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.

Figures

Graphical Abstract
Graphical Abstract
Figure 1
Figure 1
Heart failure with preserved ejection fraction and non-heart failure with preserved ejection fraction patient. Images (A) and (B) show contouring of the left atrium in the two- and four-chamber cines for left atrial strain. Images (C) and (D) show the radial and longitudinal strain assessment in the short-axis and four-chamber cines using cardiovascular magnetic resonance feature tracking. Images (E) and (F) show contouring of the left and right atria in the two- and four-chamber cines in end-systole. Note that the heart failure with preserved ejection fraction patient has lower left atrial strain (reservoir, conduit, and booster) and larger left atrial volume/area compared to the non-heart failure with preserved ejection fraction patient.
Figure 2
Figure 2
CONSORT diagram. ESC, European Society of Cardiology; HCM, hypertrophic cardiomyopathy; HCM, hypertrophic cardiomyopathy; HFpEF, heart failure with preserved ejection fraction, HF, heart failure; * = one patient undertook both stress echocardiography and invasive catheter pressure measurement. † = six patients identified on invasive catheterization and one patient identified on stress echocardiography.
Figure 3
Figure 3
Receiver operating characteristic comparing left atrial reservoir (AUC 0.804), left atrial area index (AUC 0.815), and left atrial volume index (AUC 0.776) against the cardiac magnetic resonance feature tracking left ventricle parameters. CS, circumferential strain; CDSR, circumferential early diastolic strain rate; LS, longitudinal strain; LDSR, longitudinal early diastolic strain rate; LV, left ventricle; RS, radial strain; RDSR, radial early diastolic strain rate.

References

    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL; American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines.. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147–e239.
    1. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, Hernandez AF, Fonarow GC.. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation 2012;126:65–75.
    1. Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med 2016;375:1868–1877.
    1. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF III, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu BA, Waggoner AD.. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29:277–314.
    1. West R, Ellis G, Brooks N; Joint Audit Committee of the British Cardiac Society, Royal College of Physicians of London . Complications of diagnostic cardiac catheterisation: results from a confidential inquiry into cardiac catheter complications. Heart 2005;92:810–814.
    1. Hoeper MM, Lee SH, Voswinckel R, Palazzini M, Jais X, Marinelli A, Barst RJ, Ghofrani HA, Jing Z-C, Opitz C, Seyfarth H-J, Halank M, McLaughlin V, Oudiz RJ, Ewert R, Wilkens H, Kluge S, Bremer H-C, Baroke E, Rubin LJ.. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 2006;48:2546–2552.
    1. Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, Pennell DJ.. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90:29–34.
    1. Ambale-Venkatesh B, Armstrong AC, Liu CY, Donekal S, Yoneyama K, Wu CO, Gomes AS, Hundley GW, Bluemke DA, Lima JA.. Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging 2014;15:442–449.
    1. Caudron JF J, Bauer F, Dacher JN. Evaluation of left ventricular diastolic function with cardiac MR imaging. Radiographics 2011;31:239–261.
    1. Moody WE, Taylor RJ, Edwards NC, Chue CD, Umar F, Taylor TJ, Ferro CJ, Young AA, Townend JN, Leyva F, Steeds RP.. Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 2015;41:1000–1012.
    1. Ramos JG, Fyrdahl A, Wieslander B, Thalén S, Reiter G, Reiter U, Jin N, Maret E, Eriksson M, Caidahl K, Sörensson P, Sigfridsson A, Ugander M.. Comprehensive cardiovascular magnetic resonance diastolic dysfunction grading shows very good agreement compared with echocardiography. JACC Cardiovasc Imaging 2020;13:2530–2542.
    1. Ng MY, Tong X, He J, Lin Q, Luo L, Chen Y, Shen XP, Wan EYF, Yan AT, Yiu KH.. Feature tracking for assessment of diastolic function by cardiovascular magnetic resonance imaging. Clin Radiol 2020;75:321.e1–321e11.
    1. Chamsi-Pasha MA, Zhan Y, Debs D, Shah DJ. CMR in the evaluation of diastolic dysfunction and phenotyping of HFpEF: current role and future perspectives. JACC: Cardiovascu Imaging 2020;13:283–296.
    1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A; ESC Scientific Document Group.. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2021;42:3599–3726.
    1. Pieske B, Tschope C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G.. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2019;40:3297–3317.
    1. Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 2018;138:861–870.
    1. Ouwerkerk W, Tromp J, Jin X, Jaufeerally F, Yeo PSD, Leong KTG, Ong HY, Ling LH, Loh SY, Sim D, Lee S, Soon D, Chin C, Richards AM, Lam CSP.. Heart failure with preserved ejection fraction diagnostic scores in an Asian population. Eur J Heart Fail 2020;22:1737–1739.
    1. Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, Edvardsen T, Garbi M, Ha JW, Kane GC, Kreeger J, Mertens L, Pibarot P, Picano E, Ryan T, Tsutsui JM, Varga A.. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 2016;17:1191–1229.
    1. Paulus WJ TC, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbely A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL. How to diagnose diastolic heart failure: a consensus on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007;28:2539–2550.
    1. Le TT, Tan RS, De Deyn M, Goh EP, Han Y, Leong BR, Cook SA, Chin CW.. Cardiovascular magnetic resonance reference ranges for the heart and aorta in Chinese at 3 T. J Cardiovasc Magn Reson 2016;18:21.
    1. Tong X, Poon J, Li A, Kit C, Yamada A, Shiino K, Ling LF, Choe YH, Chan J, Lau YK, Ng MY.. Validation of cardiac magnetic resonance tissue tracking in the rapid assessment of RV function: a comparative study to echocardiography. Clin Radiol 2018;73:324.e9–324e18.
    1. He J, Yang W, Wu W, Li S, Yin G, Zhuang B, Xu J, Sun X, Zhou D, Wei B, Sirajuddin A, Teng Z, Zhao S, Kureshi F, Lu M.. Early diastolic longitudinal strain rate at MRI and outcomes in heart failure with preserved ejection fraction. Radiology 2021;301:582–592.
    1. Kowallick JT, Kutty S, Edelmann F, Chiribiri A, Villa A, Steinmetz M, Sohns JM, Staab W, Bettencourt N, Unterberg-Buchwald C, Hasenfuß G, Lotz J, Schuster A.. Quantification of left atrial strain and strain rate using cardiovascular magnetic resonance myocardial feature tracking: a feasibility study. J Cardiovasc Magn Reson 2014;16:60.
    1. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977;55:613–618.
    1. Roeder MV, Rommel K-P, Kowallick JT, Blazek S, Besler C, Fengler K, Lotz J, Hasenfuß G, Lücke C, Gutberlet M, Schuler G, Schuster A, Lurz P.. Influence of left atrial function on exercise capacity and left ventricular function in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging 2017;10:e005467.
    1. Chirinos JA, Sardana M, Ansari B, Satija V, Kuriakose D, Edelstein I, Oldland G, Miller R, Gaddam S, Lee J, Suri A, Akers SR.. Left atrial phasic function by cardiac magnetic resonance feature tracking is a strong predictor of incident cardiovascular events. Circ Cardiovasc Imaging 2018;11:e007512.
    1. Mordi IR, Singh S, Rudd A, Srinivasan J, Frenneaux M, Tzemos N, Dawson DK.. Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects. JACC Cardiovasc Imaging 2018;11:577–585.
    1. Ito H, Ishida M, Makino W, Goto Y, Ichikawa Y, Kitagawa K, Omori T, Dohi K, Ito M, Sakuma H.. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices. J Cardiovasc Magn Reson 2020;22:42.
    1. Tadic M, Sala C, Carugo S, Mancia G, Grassi G, Cuspidi C. Myocardial strain in hypertension: a meta-analysis of two-dimensional speckle tracking echocardiographic studies. J Hypertens 2021;39:2103–2112.
    1. Liu J-H, Chen Y, Yuen M, Zhen Z, Chan CW-S, Lam KS-L, Tse H-F, Yiu K-H.. Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2016;15:22.
    1. Liu X, Yang Z-G, Gao Y, Xie L-J, Jiang L, Hu B-Y, Diao K-Y, Shi K, Xu H-Y, Shen M-T, Ren Y, Guo Y-K.. Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: a contrast-enhanced cardiovascular magnetic resonance study. Cardiovasc Diabetol 2018;17:139.
    1. D’Elia N, Caselli S, Kosmala W, Lancellotti P, Morris D, Muraru D, Takeuchi M, Bosch Avd, Grootel RWJv, Villarraga H, Marwick TH. Normal global longitudinal strain. JACC Cardiovasc Imaging 2020;13:167–169.
    1. Tondi L, Badano LP, Figliozzi S, Pica S, Torlasco C, Camporeale A, Florescu DR, Disabato G, Parati G, Lombardi M, Muraru D.. The use of dedicated long-axis views focused on the left atrium improves the accuracy of left atrial volumes and emptying fraction measured by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023;25:10.
    1. Kanagala P, Cheng ASH, Singh A, McAdam J, Marsh AM, Arnold JR, Squire IB, Ng LL, McCann GP.. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in heart failure with preserved ejection fraction—implications for clinical trials. J Cardiovasc Magn Reson 2018;20:4.

Source: PubMed

3
Abonnieren