A Systematic Review on Modeling Methods and Influential Factors for Mapping Dengue-Related Risk in Urban Settings

Shi Yin, Chao Ren, Yuan Shi, Junyi Hua, Hsiang-Yu Yuan, Lin-Wei Tian, Shi Yin, Chao Ren, Yuan Shi, Junyi Hua, Hsiang-Yu Yuan, Lin-Wei Tian

Abstract

Dengue fever is an acute mosquito-borne disease that mostly spreads within urban or semi-urban areas in warm climate zones. The dengue-related risk map is one of the most practical tools for executing effective control policies, breaking the transmission chain, and preventing disease outbreaks. Mapping risk at a small scale, such as at an urban level, can demonstrate the spatial heterogeneities in complicated built environments. This review aims to summarize state-of-the-art modeling methods and influential factors in mapping dengue fever risk in urban settings. Data were manually extracted from five major academic search databases following a set of querying and selection criteria, and a total of 28 studies were analyzed. Twenty of the selected papers investigated the spatial pattern of dengue risk by epidemic data, whereas the remaining eight papers developed an entomological risk map as a proxy for potential dengue burden in cities or agglomerated urban regions. The key findings included: (1) Big data sources and emerging data-mining techniques are innovatively employed for detecting hot spots of dengue-related burden in the urban context; (2) Bayesian approaches and machine learning algorithms have become more popular as spatial modeling tools for predicting the distribution of dengue incidence and mosquito presence; (3) Climatic and built environmental variables are the most common factors in making predictions, though the effects of these factors vary with the mosquito species; (4) Socio-economic data may be a better representation of the huge heterogeneity of risk or vulnerability spatial distribution on an urban scale. In conclusion, for spatially assessing dengue-related risk in an urban context, data availability and the purpose for mapping determine the analytical approaches and modeling methods used. To enhance the reliabilities of predictive models, sufficient data about dengue serotyping, socio-economic status, and spatial connectivity may be more important for mapping dengue-related risk in urban settings for future studies.

Keywords: dengue; influential factors; risk mapping; spatial models; urban environment.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of article selection and inclusion process.
Figure 2
Figure 2
Location of selected studies overlaid with the map of the global dengue burden. The levels of dengue risk are based on reports from the Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, and Division of Vector-Borne Diseases [52]. “Frequent or Continuous” risk means that either frequent outbreaks occur, or transmission is ongoing. “Sporadic or Uncertain” risk means that the risk varies and is unpredictable, and that country-level data is not available. The 10 °C isotherms in the winter season were generated using the mean temperature (2 m height, world) data from January and July in the year 2018 retrieved from the ERA-Interim.
Figure 3
Figure 3
General information about the study area in selected references.
Figure 4
Figure 4
The modeling approaches of cluster analysis, covariates screen, spatial or spatio-temporal modeling, spatial connectivity, and validation methods in selected studies.

References

    1. Gubler D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Trop. Med. Health. 2011;39((Suppl. S4)):3–11. doi: 10.2149/tmh.2011-S05.
    1. Lambrechts L., Paaijmans K.P., Fansiri T., Carrington L.B., Kramer L.D., Thomas M.B., Scott T.W. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. USA. 2011;108:7460–7465. doi: 10.1073/pnas.1101377108.
    1. WHO . Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. World Health Organization; Geneva, Switzerland: 2009.
    1. Araujo R.V., Albertini M.R., Costa-da-Silva A.L., Suesdek L., Franceschi N.C., Bastos N.M., Katz G., Cardoso V.A., Castro B.C., Capurro M.L., et al. Sao Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz. J. Infect. Dis. 2015;19:146–155. doi: 10.1016/j.bjid.2014.10.004.
    1. Messina J.P., Brady O.J., Golding N., Kraemer M.U.G., Wint G.R.W., Ray S.E., Pigott D.M., Shearer F.M., Johnson K., Earl L., et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019;4:1508–1515. doi: 10.1038/s41564-019-0476-8.
    1. Johnson D. Cartographies of Disease: Maps, Mapping, and Medicine. Taylor & Francis; Abingdon, UK: 2007.
    1. Whiteman A., Loaiza J.R., Yee D.A., Poh K.C., Watkins A.S., Lucas K.J., Rapp T.J., Kline L., Ahmed A., Chen S., et al. Do socioeconomic factors drive Aedes mosquito vectors and their arboviral diseases? A systematic review of dengue, chikungunya, yellow fever, and Zika Virus. One Health. 2020;11:100188. doi: 10.1016/j.onehlt.2020.100188.
    1. Marti R., Li Z., Catry T., Roux E., Mangeas M., Handschumacher P., Gaudart J., Tran A., Demagistri L., Faure J.-F., et al. A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires. Remote Sens. 2020;12:932. doi: 10.3390/rs12060932.
    1. Li Y., Dou Q., Lu Y., Xiang H., Yu X., Liu S. Effects of ambient temperature and precipitation on the risk of dengue fever: A systematic review and updated meta-analysis. Environ. Res. 2020;191:110043. doi: 10.1016/j.envres.2020.110043.
    1. Naish S., Dale P., Mackenzie J.S., McBride J., Mengersen K., Tong S. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect. Dis. 2014;14:167. doi: 10.1186/1471-2334-14-167.
    1. Aswi A., Cramb S.M., Moraga P., Mengersen K. Bayesian spatial and spatio-temporal approaches to modelling dengue fever: A systematic review. Epidemiol. Infect. 2018;147:e33. doi: 10.1017/S0950268818002807.
    1. Louis V.R., Phalkey R., Horstick O., Ratanawong P., Wilder-Smith A., Tozan Y., Dambach P. Modeling tools for dengue risk mapping—A systematic review. Int. J. Health Geogr. 2014;13:50. doi: 10.1186/1476-072X-13-50.
    1. Rogers D.J., Suk J.E., Semenza J.C. Using global maps to predict the risk of dengue in Europe. Acta Trop. 2014;129:1–14. doi: 10.1016/j.actatropica.2013.08.008.
    1. Tsheten T., Clements A.C.A., Gray D.J., Wangdi K. Dengue risk assessment using multicriteria decision analysis: A case study of Bhutan. PLoS Negl. Trop. Dis. 2021;15:17. doi: 10.1371/journal.pntd.0009021.
    1. Guzzetta G., Montarsi F., Baldacchino F.A., Metz M., Capelli G., Rizzoli A., Pugliese A., Rosa R., Poletti P., Merler S. Potential Risk of Dengue and Chikungunya Outbreaks in Northern Italy Based on a Population Model of Aedes albopictus (Diptera: Culicidae) PLoS Negl. Trop. Dis. 2016;10:21. doi: 10.1371/journal.pntd.0004762.
    1. Lowe R., Bailey T.C., Stephenson D.B., Graham R.J., Coelho C.A.S., Carvalho M.S., Barcellos C. Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Comput. Geosci. 2011;37:371–381. doi: 10.1016/j.cageo.2010.01.008.
    1. Ortiz P.L., Rivero A., Linares Y., Perez A., Vazquez J.R. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba. MEDICC Rev. 2015;17:20–28.
    1. Perkins T.A., Reiner R.C., Rodriguez-Barraquer I., Smith D.L., Scott T.W., Cummings D.A. A review of transmission models of dengue: A quantitative and qualitative analysis of model features. In: Gubler D.J., Ooi E.E., Vasudevan S., Farrar J., editors. Dengue and Dengue Hemorrhagic Fever. 2nd ed. CABI; Wallingford, UK: 2014. pp. 99–114.
    1. Brady O.J., Gething P.W., Bhatt S., Messina J.P., Brownstein J.S., Hoen A.G., Moyes C.L., Farlow A.W., Scott T.W., Hay S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 2012;6:e1760. doi: 10.1371/journal.pntd.0001760.
    1. Attaway D.F., Jacobsen K.H., Falconer A., Manca G., Waters N.M. Assessing the methods needed for improved dengue mapping: A SWOT analysis. Pan. Afr. Med. J. 2014;17:289. doi: 10.11604/pamj.2014.17.289.3435.
    1. Rogers D., Wilson A., Hay S., Graham A. The global distribution of yellow fever and dengue. Adv. Parasitol. 2006;62:181–220.
    1. Sallam M.F., Fizer C., Pilant A.N., Whung P.Y. Systematic Review: Land Cover, Meteorological, and Socioeconomic Determinants of Aedes Mosquito Habitat for Risk Mapping. Int. J. Environ. Res. Public Health. 2017;14:1230. doi: 10.3390/ijerph14101230.
    1. Lee S.A., Jarvis C.I., Edmunds W.J., Economou T., Lowe R. Spatial connectivity in mosquito-borne disease models: A systematic review of methods and assumptions. J. R. Soc. Interface. 2021;18:20210096. doi: 10.1098/rsif.2021.0096.
    1. Dickin S.K., Schuster-Wallace C.J. Assessing changing vulnerability to dengue in northeastern Brazil using a water-associated disease index approach. Glob. Environ. Change. 2014;29:155–164. doi: 10.1016/j.gloenvcha.2014.09.007.
    1. Machault V., Yebakima A., Etienne M., Vignolles C., Palany P., Tourre Y.M., Guerecheau M., Lacaux J.P. Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data. ISPRS Int. J. Geo-Inf. 2014;3:1352–1371. doi: 10.3390/ijgi3041352.
    1. Ong J., Liu X., Rajarethinam J., Kok S.Y., Liang S., Tang C.S., Cook A.R., Ng L.C., Yap G. Mapping dengue risk in Singapore using Random Forest. PLoS Negl. Trop. Dis. 2018;12:e0006587. doi: 10.1371/journal.pntd.0006587.
    1. Wen T.-H., Lin M.-H., Teng H.-J., Chang N.-T. Incorporating the human-Aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Appl. Geogr. 2015;62:256–266. doi: 10.1016/j.apgeog.2015.05.003.
    1. Martinez-Bello D., Lopez-Quilez A., Prieto A.T. Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stoch. Environ. Res. Risk Assess. 2018;32:1587–1601. doi: 10.1007/s00477-017-1461-5.
    1. Espinosa M., Weinberg D., Rotela C.H., Polop F., Abril M., Scavuzzo C.M. Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina) PLoS Negl. Trop. Dis. 2016;10:e0004621. doi: 10.1371/journal.pntd.0004621.
    1. Mao L., Yin L., Song X., Mei S. Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data. Acta Trop. 2016;162:188–195. doi: 10.1016/j.actatropica.2016.06.029.
    1. Ghosh S., Dinda S., Das Chatterjee N., Das K., Mahata R. The spatial clustering of dengue disease and risk susceptibility mapping: An approach towards sustainable health management in Kharagpur city, India. Spat. Inf. Res. 2019;27:187–204. doi: 10.1007/s41324-018-0224-9.
    1. Fatima S.H., Atif S., Rasheed S.B., Zaidi F., Hussain E. Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan. Trop. Med. Int. Health. 2016;21:427–436. doi: 10.1111/tmi.12664.
    1. Yu H.-L., Lee C.-H., Chien L.-C. A spatiotemporal dengue fever early warning model accounting for nonlinear associations with hydrological factors: A Bayesian maximum entropy approach. Stoch. Environ. Res. Risk Assess. 2016;30:2127–2141. doi: 10.1007/s00477-016-1328-1.
    1. Desjardins M.R., Eastin M.D., Paul R., Casas I., Delmelle E.M. Space-Time conditional autoregressive modeling to estimate neighborhood-level risks for dengue fever in Cali, Colombia. Am. J. Trop. Med. Hyg. 2020;103:2040–2053. doi: 10.4269/ajtmh.20-0080.
    1. Little E., Bajwa W., Shaman J. Local environmental and meteorological conditions influencing the invasive mosquito Ae. albopictus and arbovirus transmission risk in New York City. PLoS Negl. Trop. Dis. 2017;11:e0005828. doi: 10.1371/journal.pntd.0005828.
    1. Chen C.C., Teng Y.C., Lin B.C., Fan I.C., Chan T.C. Online platform for applying space-time scan statistics for prospectively detecting emerging hot spots of dengue fever. Int. J. Health Geogr. 2016;15:43. doi: 10.1186/s12942-016-0072-6.
    1. Ordonez-Sierra R., Mastachi-Loza C.A., Diaz-Delgado C., Cuervo-Robayo A.P., Ortiz C.R.F., Gomez-Albores M.A., Torres I.M. Spatial Risk Distribution of Dengue Based on the Ecological Niche Model of Aedes aegypti (Diptera: Culicidae) in the Central Mexican Highlands. J. Med. Entomol. 2020;57:728–737. doi: 10.1093/jme/tjz244.
    1. Estallo E.L., Sangermano F., Grech M., Luduena-Almeida F., Frias-Cespedes M., Ainete M., Almiron W., Livdahl T. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Med. Vet. Entomol. 2018;32:451–461. doi: 10.1111/mve.12323.
    1. Wijayanti S.P., Porphyre T., Chase-Topping M., Rainey S.M., McFarlane M., Schnettler E., Biek R., Kohl A. The Importance of Socio-Economic Versus Environmental Risk Factors for Reported Dengue Cases in Java, Indonesia. PLoS Negl. Trop. Dis. 2016;10:e0004964. doi: 10.1371/journal.pntd.0004964.
    1. Pham N.T.T., Nguyen C.T., Vu H.H. Assessing and modelling vulnerability to dengue in the Mekong Delta of Vietnam by geospatial and time-series approaches. Environ. Res. 2020;186:10. doi: 10.1016/j.envres.2020.109545.
    1. Wiese D., Escalante A.A., Murphy H., Henry K.A., Gutierrez-Velez V.H. Integrating environmental and neighborhood factors in MaxEnt modeling to predict species distributions: A case study of Aedes albopictus in southeastern Pennsylvania. PLoS ONE. 2019;14:23. doi: 10.1371/journal.pone.0223821.
    1. Li Q., Ren H., Zheng L., Cao W., Zhang A., Zhuang D., Lu L., Jiang H. Ecological niche modeling identifies fine-scale areas at high risk of dengue fever in the pearl river delta, China. Int. J. Environ. Res. Public Health. 2017;14:619. doi: 10.3390/ijerph14060619.
    1. Naqvi S.A.A., Sajjad M., Waseem L.A., Khalid S., Shaikh S., Kazmi S.J.H. Integrating Spatial Modelling and Space-Time Pattern Mining Analytics for Vector Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan. Int. J. Environ. Res. Public Health. 2021;18:12018. doi: 10.3390/ijerph182212018.
    1. Ha T.V., Kim W., Nguyen-Tien T., Lindahl J., Nguyen-Viet H., Thi N.Q., Nguyen H.V., Unger F., Lee H.S. Spatial distribution of Culex mosquito abundance and associated risk factors in Hanoi, Vietnam. PLoS Negl. Trop. Dis. 2021;15:e0009497. doi: 10.1371/journal.pntd.0009497.
    1. Ren H., Zheng L., Li Q., Yuan W., Lu L. Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014. Int. J. Environ. Res. Public Health. 2017;14:1518. doi: 10.3390/ijerph14121518.
    1. Wu W., Ren H., Lu L. Increasingly expanded future risk of dengue fever in the Pearl River Delta, China. PLoS Negl. Trop. Dis. 2021;15:e0009745. doi: 10.1371/journal.pntd.0009745.
    1. Trewin B.J., Parry H.R., Pagendam D.E., Devine G.J., Zalucki M.P., Darbro J.M., Jansen C.C., Schellhorn N.A. Simulating an invasion: Unsealed water storage (rainwater tanks) and urban block design facilitate the spread of the dengue fever mosquito, Aedes aegypti, in Brisbane, Australia. Biol. Invasions. 2021;23:3891–3906. doi: 10.1007/s10530-021-02619-z.
    1. Acharya B.K., Cao C., Lakes T., Chen W., Naeem S., Pandit S. Modeling the spatially varying risk factors of dengue fever in Jhapa district, Nepal, using the semi-parametric geographically weighted regression model. Int. J. Biometeorol. 2018;62:1973–1986. doi: 10.1007/s00484-018-1601-8.
    1. Yin M.S., Bicout D., Haddawy P., Schoning J., Laosiritaworn Y., Sa-Angchai P. Added-value of mosquito vector breeding sites from street view images in the risk mapping of dengue incidence in Thailand. PLoS Negl. Trop. Dis. 2021;15:26
    1. Ajim Ali S., Ahmad A. Using analytic hierarchy process with GIS for Dengue risk mapping in Kolkata Municipal Corporation, West Bengal, India. Spat. Inf. Res. 2018;26:449–469. doi: 10.1007/s41324-018-0187-x.
    1. Jaya I., Folmer H. Spatiotemporal high-resolution prediction and mapping: Methodology and application to dengue disease. J. Geogr. Syst. 2022;24:527–581. doi: 10.1007/s10109-021-00368-0.
    1. CDC Dengue Around the World. [(accessed on 27 August 2022)]; Available online: .
    1. Attaway D.F., Jacobsen K.H., Falconer A., Manca G., Waters N.M. Risk analysis for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools) Acta Trop. 2016;158:248–257. doi: 10.1016/j.actatropica.2016.02.018.
    1. Hu W., Clements A.C.A., Williams G.M., Tong S., Mengersen K.L. Spatial Patterns and Socioecological Drivers of Dengue Fever Transmission in Queensland, Australia. Environ. Health Perspect. 2012;120:260–266. doi: 10.1289/ehp.1003270.
    1. de Melo D.P., Scherrer L.R., Eiras A.E. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: A space-time clusters analysis. PLoS ONE. 2012;7:e42125. doi: 10.1371/journal.pone.0042125.
    1. WHO . Manual on Environmental Management for Mosquito Control, with Special Emphasis on Malaria Vectors. World Health Organization; Geneva, Switzerland: 1982.
    1. Qi X., Wang Y., Li Y., Meng Y., Chen Q., Ma J., Gao G.F. The Effects of Socioeconomic and Environmental Factors on the Incidence of Dengue Fever in the Pearl River Delta, China, 2013. PLoS Negl. Trop. Dis. 2015;9:e0004159. doi: 10.1371/journal.pntd.0004159.
    1. Kala A.K., Tiwari C., Mikler A.R., Atkinson S.F. A comparison of least squares regression and geographically weighted regression modeling of West Nile virus risk based on environmental parameters. PeerJ. 2017;5:e3070. doi: 10.7717/peerj.3070.
    1. Ma S., Ooi E.E., Goh K.T. Socioeconomic Determinants of Dengue Incidence in Singapore. Dengue Bull. 2008;32:17–28.
    1. Whiteman A., Delmelle E., Rapp T., Chen S., Chen G., Dulin M. A Novel Sampling Method to Measure Socioeconomic Drivers of Aedes Albopictus Distribution in Mecklenburg County, North Carolina. Int. J. Environ. Res. Public Health. 2018;15:2179. doi: 10.3390/ijerph15102179.
    1. Jordan M.I., Mitchell T.M. Machine learning: Trends, perspectives, and prospects. Science. 2015;349:255–260. doi: 10.1126/science.aaa8415.
    1. Charlton M., Fotheringham S., Brunsdon C. Geographically Weighted Regression. National Centre for Geocomputation, National University of Ireland Maynooth; Maynooth, Ireland: 2009. p. 2. White Paper.
    1. Marshall R.J. Mapping Disease and Mortality Rates Using Empirical Bayes Estimators. Appl. Stat. 1991;40:283–294. doi: 10.2307/2347593.
    1. Hussain-Alkhateeb L., Rivera Ramirez T., Kroeger A., Gozzer E., Runge-Ranzinger S. Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review. PLoS Negl. Trop. Dis. 2021;15:e0009686. doi: 10.1371/journal.pntd.0009686.
    1. Lobo J.M., Jiménez-Valverde A., Real R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008;17:145–151. doi: 10.1111/j.1466-8238.2007.00358.x.
    1. Li Y., Li M., Li C., Liu Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. Forests. 2020;11:302. doi: 10.3390/f11030302.
    1. Cromwell E.A., Stoddard S.T., Barker C.M., Van Rie A., Messer W.B., Meshnick S.R., Morrison A.C., Scott T.W. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl. Trop. Dis. 2017;11:e0005429. doi: 10.1371/journal.pntd.0005429.
    1. Schmidt W.P., Suzuki M., Thiem V.D., White R.G., Tsuzuki A., Yoshida L.M., Yanai H., Haque U., Thole H., Anh D.D., et al. Population density, water supply, and the risk of dengue fever in Vietnam: Cohort study and spatial analysis. PLoS Med. 2011;8:e1001082. doi: 10.1371/journal.pmed.1001082.
    1. Chiaravalloti-Neto F., da Silva R.A., Zini N., da Silva G.C.D., da Silva N.S., Parra M.C.P., Dibo M.R., Estofolete C.F., Favaro E.A., Dutra K.R., et al. Seroprevalence for dengue virus in a hyperendemic area and associated socioeconomic and demographic factors using a cross-sectional design and a geostatistical approach, state of Sao Paulo, Brazil. BMC Infect. Dis. 2019;19:441. doi: 10.1186/s12879-019-4074-4.
    1. Wu C., Kao S.-C., Shih C.-H., Kan M.-H. Open data mining for Taiwan’s dengue epidemic. Acta Trop. 2018;183:1–7. doi: 10.1016/j.actatropica.2018.03.017.
    1. Kraemer M.U., Bisanzio D., Reiner R., Zakar R., Hawkins J.B., Freifeld C.C., Smith D.L., Hay S.I., Brownstein J.S., Perkins T.A. Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: A case study using geolocated tweets from Lahore, Pakistan. EPJ Data Sci. 2018;7:16. doi: 10.1140/epjds/s13688-018-0144-x.
    1. Bomfim R., Pei S., Shaman J., Yamana T., Makse H.A., Andrade J.S., Jr., Lima Neto A.S., Furtado V. Predicting dengue outbreaks at neighbourhood level using human mobility in urban areas. J. R Soc. Interface. 2020;17:20200691. doi: 10.1098/rsif.2020.0691.

Source: PubMed

3
Abonnieren