Entomo-Virological Aedes aegypti Surveillance Applied for Prediction of Dengue Transmission: A Spatio-Temporal Modeling Study

André de Souza Leandro, Mario J C Ayala, Renata Defante Lopes, Caroline Amaral Martins, Rafael Maciel-de-Freitas, Daniel A M Villela, André de Souza Leandro, Mario J C Ayala, Renata Defante Lopes, Caroline Amaral Martins, Rafael Maciel-de-Freitas, Daniel A M Villela

Abstract

Currently, DENV transmitted primarily by Aedes aegypti affects approximately one in three people annually. The spatio-temporal heterogeneity of vector infestation and the intensity of arbovirus transmission require surveillance capable of predicting an outbreak. In this work, we used data from 4 years of reported dengue cases and entomological indicators of adult Aedes collected from approximately 3500 traps installed in the city of Foz do Iguaçu, Brazil, to evaluate the spatial and temporal association between vector infestation and the occurrence of dengue cases. Entomological (TPI, ADI and MII) and entomo-virological (EVI) indexes were generated with the goal to provide local health managers with a transmission risk stratification that allows targeting areas for vector control activities. We observed a dynamic pattern in the evaluation; however, it was a low spatio-temporal correlation of Ae. aegypti and incidence of dengue. Independent temporal and spatial effects capture a significant portion of the signal given by human arbovirus cases. The entomo-virological index (EVI) significantly signaled risk in a few areas, whereas entomological indexes were not effective in providing dengue risk alert. Investigating the variation of biotic and abiotic factors between areas with and without correlation should provide more information about the local epidemiology of dengue.

Keywords: Zika; arbovirus; chikungunya; dengue; disease transmission; entomological surveillance; epidemiology; vector control; vectorial capacity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Dengue cases per week in Foz do Iguaçu from 2017 to 2021.
Figure 2
Figure 2
Temporal random effect (A), and posterior probability of dengue risk from spatial random effect (B).
Figure 3
Figure 3
Posterior probability of dengue risk associated to infestation indexes (MII, ADI and TPI), and positive arboviral test (EVI) without time lag.
Figure 4
Figure 4
Posterior probability of dengue risk associated to infestation indexes (MII, ADI and TPI), and positive arboviral test (EVI) with one-week lag.
Figure 5
Figure 5
Posterior probability of dengue risk associated to infestation indexes (MII, ADI and TPI), and positive arboviral test (EVI) with two-week lag.
Figure 6
Figure 6
Posterior probability of dengue risk associated to infestation indexes (MII, ADI and TPI), and positive arboviral test (EVI) with three-week lag.
Figure 7
Figure 7
Posterior probability of dengue risk associated to infestation indexes (MII, ADI and TPI), and positive arboviral test (EVI) with four-week lag.

References

    1. Weaver S.C., Reisen W.K. Present and Future Arboviral Threats. Antivir. Res. 2010;85:328–345. doi: 10.1016/j.antiviral.2009.10.008.
    1. Kraemer M.U.G., Sinka M.E., Duda K.A., Mylne A.Q.N., Shearer F.M., Barker C.M., Moore C.G., Carvalho R.G., Coelho G.E., Van Bortel W., et al. The Global Distribution of the Arbovirus Vectors Aedes Aegypti and Ae. Albopictus. eLife. 2015;4:e08347. doi: 10.7554/eLife.08347.
    1. Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L., Drake J.M., Brownstein J.S., Hoen A.G., Sankoh O., et al. The Global Distribution and Burden of Dengue. Nature. 2013;496:504–507. doi: 10.1038/nature12060.
    1. Brady O.J., Hay S.I. The Global Expansion of Dengue: How Aedes Aegypti Mosquitoes Enabled the First Pandemic Arbovirus. Annu. Rev. Entomol. 2020;65:191–208. doi: 10.1146/annurev-ento-011019-024918.
    1. David M.R., Dantas E.S., Maciel-de-Freitas R., Codeço C.T., Prast A.E., Lourenço-de-Oliveira R. Influence of Larval Habitat Environmental Characteristics on Culicidae Immature Abundance and Body Size of Adult Aedes Aegypti. Front. Ecol. Evol. 2021;9:626757. doi: 10.3389/fevo.2021.626757.
    1. Scott T.W., Chow E., Strickman D., Kittayapong P., Wirtz R.A., Lorenz L.H., Edman J.D. Blood-Feeding Patterns of Aedes Aegypti (Diptera: Culicidae) Collected in a Rural Thai Village. J. Med. Entomol. 1993;30:922–927. doi: 10.1093/jmedent/30.5.922.
    1. Edman J.D., Strickman D., Kittayapong P., Scott T.W. Female Aedes Aegypti (Diptera: Culicidae) in Thailand Rarely Feed on Sugar. J. Med. Entomol. 1992;29:1035–1038. doi: 10.1093/jmedent/29.6.1035.
    1. Liang G., Gao X., Gould E.A. Factors Responsible for the Emergence of Arboviruses; Strategies, Challenges and Limitations for Their Control. Emerg. Microbes Infect. 2015;4:e18. doi: 10.1038/emi.2015.18.
    1. Maciel-de-Freitas R., Marques W.A., Peres R.C., Cunha S.P., Lourenço-de-Oliveira R. Variation in Aedes Aegypti(Diptera: Culicidae) Container Productivity in a Slum and a Suburban District of Rio de Janeiro during Dry and Wet Seasons. Mem. Inst. Oswaldo Cruz. 2007;102:489–496. doi: 10.1590/S0074-02762007005000056.
    1. Roiz D., Wilson A.L., Scott T.W., Fonseca D.M., Jourdain F., Müller P., Velayudhan R., Corbel V. Integrated Aedes Management for the Control of Aedes-Borne Diseases. PLoS Negl. Trop. Dis. 2018;12:e0006845. doi: 10.1371/journal.pntd.0006845.
    1. Maciel-de-Freitas R., Avendanho F.C., Santos R., Sylvestre G., Araújo S.C., Lima J.B.P., Martins A.J., Coelho G.E., Valle D. Undesirable Consequences of Insecticide Resistance Following Aedes Aegypti Control Activities Due to a Dengue Outbreak. PLoS ONE. 2014;9:e92424. doi: 10.1371/journal.pone.0092424.
    1. Maciel-de-Freitas R., Lourenço-de-Oliveira R. Does Targeting Key-Containers Effectively Reduce Aedes Aegypti Population Density? Trop. Med. Int. Health. 2011;16:965–973. doi: 10.1111/j.1365-3156.2011.02797.x.
    1. Tun-Lin W., Lenhart A., Nam V.S., Rebollar-Téllez E., Morrison A.C., Barbazan P., Cote M., Midega J., Sanchez F., Manrique-Saide P., et al. Reducing Costs and Operational Constraints of Dengue Vector Control by Targeting Productive Breeding Places: A Multi-Country Non-Inferiority Cluster Randomized Trial. Trop. Med. Int. Health. 2009;14:1143–1153. doi: 10.1111/j.1365-3156.2009.02341.x.
    1. Moyes C.L., Vontas J., Martins A.J., Ng L.C., Koou S.Y., Dusfour I., Raghavendra K., Pinto J., Corbel V., David J.-P., et al. Contemporary Status of Insecticide Resistance in the Major Aedes Vectors of Arboviruses Infecting Humans. PLoS Negl. Trop. Dis. 2017;11:e0005625. doi: 10.1371/journal.pntd.0005625.
    1. Garcia G.d.A., David M.R., Martins A.d.J., Maciel-de-Freitas R., Linss J.G.B., Araújo S.C., Lima J.B.P., Valle D. The Impact of Insecticide Applications on the Dynamics of Resistance: The Case of Four Aedes Aegypti Populations from Different Brazilian Regions. PLoS Negl. Trop. Dis. 2018;12:e0006227. doi: 10.1371/journal.pntd.0006227.
    1. Maciel-de-Freitas R., Valle D. Challenges Encountered Using Standard Vector Control Measures for Dengue in Boa Vista, Brazil. Bull. World Health Organ. 2014;92:685–689. doi: 10.2471/BLT.13.119081.
    1. Huang Y.-J.S., Higgs S., Vanlandingham D.L. Emergence and Re-Emergence of Mosquito-Borne Arboviruses. Curr. Opin. Virol. 2019;34:104–109. doi: 10.1016/j.coviro.2019.01.001.
    1. Focks D.A., Brenner R.J., Hayes J., Daniels E. Transmission Thresholds for Dengue in Terms of Aedes Aegypti Pupae per Person with Discussion of Their Utility in Source Reduction Efforts. Am. J. Trop. Med. Hyg. 2000;62:11–18. doi: 10.4269/ajtmh.2000.62.11.
    1. Focks D.A. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors. World Health Organization; Geneva, Switzerland: 2003.
    1. Sivagnaname N., Gunasekaran K. Need for an Efficient Adult Trap for the Surveillance of Dengue Vectors. Indian J. Med. Res. 2012;136:739–749.
    1. Codeço C.T., Lima A.W.S., Araújo S.C., Lima J.B.P., Maciel-de-Freitas R., Honório N.A., Galardo A.K.R., Braga I.A., Coelho G.E., Valle D. Surveillance of Aedes Aegypti: Comparison of House Index with Four Alternative Traps. PLoS Negl. Trop. Dis. 2015;9:e0003475. doi: 10.1371/journal.pntd.0003475.
    1. Maciel-de-Freitas R., Peres R.C., Alves F., Brandolini M.B. Mosquito Traps Designed to Capture Aedes Aegypti (Diptera: Culicidae) Females: Preliminary Comparison of Adultrap, MosquiTRAP and Backpack Aspirator Efficiency in a Dengue-Endemic Area of Brazil. Mem. Inst. Oswaldo Cruz. 2008;103:602–605. doi: 10.1590/S0074-02762008000600016.
    1. Leandro A.S., de Castro W.A.C., Lopes R.D., Delai R.M., Villela D.A.M., De-Freitas R.M. Citywide Integrated Aedes Aegypti Mosquito Surveillance as Early Warning System for Arbovirus Transmission, Brazil. Emerg. Infect. Dis. 2022;28:701–706. doi: 10.3201/eid2804.211547.
    1. Masrani A.S., Nik Husain N.R., Musa K.I., Yasin A.S. Trends and Spatial Pattern Analysis of Dengue Cases in Northeast Malaysia. J. Prev. Med. Public Health. 2022;55:80–87. doi: 10.3961/jpmph.21.461.
    1. Jemal Y., Al-Thukair A.A. Combining GIS Application and Climatic Factors for Mosquito Control in Eastern Province, Saudi Arabia. Saudi J. Biol. Sci. 2018;25:1593–1602. doi: 10.1016/j.sjbs.2016.04.001.
    1. Mohd-Zaki A.H., Brett J., Ismail E., L’Azou M. Epidemiology of Dengue Disease in Malaysia (2000–2012): A Systematic Literature Review. PLoS Negl. Trop. Dis. 2014;8:e3159. doi: 10.1371/journal.pntd.0003159.
    1. Service M.W. Mosquito Ecology. 2nd ed. Springer; Dordrecht, The Netherlands: 1993.
    1. Bang Y.H., Bown D.N., Onwubiko A.O. Prevalence of Larvae of Potential Yellow Fever Vectors in Domestic Water Containers in South-East Nigeria. Bull. World Health Organ. 1981;59:107–114.
    1. Focks D.A., Chadee D.D. Pupal Survey: An Epidemiologically Significant Surveillance Method for Aedes Aegypti: An Example Using Data from Trinidad. Am. J. Trop. Med. Hyg. 1997;56:159–167. doi: 10.4269/ajtmh.1997.56.159.
    1. Maciel-de-Freitas R. A review on the ecological determinants of aedes aegypti (diptera: Culicidae) vectorial capacity. Oecologia Aust. 2010;14:726–736. doi: 10.4257/oeco.2010.1403.08.
    1. Koenraadt C.J.M., Aldstadt J., Kijchalao U., Sithiprasasna R., Getis A., Jones J.W., Scott T.W. Spatial and Temporal Patterns in Pupal and Adult Production of the Dengue Vector Aedes Aegypti in Kamphaeng Phet, Thailand. Am. J. Trop. Med. Hyg. 2008;79:230–238. doi: 10.4269/ajtmh.2008.79.230.
    1. Morrison A.C., Zielinski-Gutierrez E., Scott T.W., Rosenberg R. Defining Challenges and Proposing Solutions for Control of the Virus Vector Aedes Aegypti. PLoS Med. 2008;5:e68. doi: 10.1371/journal.pmed.0050068.
    1. Leandro A.d.S., Lopes R.D., Martins C.A., Rivas A.V., da Silva I., Galvão S.R., Maciel-de-Freitas R. The Adoption of the One Health Approach to Improve Surveillance of Venomous Animal Injury, Vector-Borne and Zoonotic Diseases in Foz Do Iguaçu, Brazil. PLoS Negl. Trop. Dis. 2021;15:e0009109. doi: 10.1371/journal.pntd.0009109.
    1. Getis A., Morrison A.C., Gray K., Scott T.W. Characteristics of the Spatial Pattern of the Dengue Vector, Aedes Aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 2003;69:494–505. doi: 10.4269/ajtmh.2003.69.494.
    1. dos Reis I.C., Gibson G., Ayllón T., de Medeiros Tavares A., de Araújo J.M.G., da Silva Monteiro E., Rodrigues Aguiar A., de Oliveira J.V., de Paiva A.A.P., Wana Bezerra Pereira H., et al. Entomo-Virological Surveillance Strategy for Dengue, Zika and Chikungunya Arboviruses in Field-Caught Aedes Mosquitoes in an Endemic Urban Area of the Northeast of Brazil. Acta Trop. 2019;197:105061. doi: 10.1016/j.actatropica.2019.105061.
    1. Lau S.-M., Vythilingam I., Doss J.I., Sekaran S.D., Chua T.H., Wan Sulaiman W.Y., Chinna K., Lim Y.A.-L., Venugopalan B. Surveillance of Adult Aedes Mosquitoes in Selangor, Malaysia. Trop. Med. Int. Health. 2015;20:1271–1280. doi: 10.1111/tmi.12555.
    1. Medeiros A.S., Costa D.M.P., Branco M.S.D., Sousa D.M.C., Monteiro J.D., Galvão S.P.M., Azevedo P.R.M., Fernandes J.V., Jeronimo S.M.B., Araújo J.M.G. Dengue Virus in Aedes Aegypti and Aedes Albopictus in Urban Areas in the State of Rio Grande Do Norte, Brazil: Importance of Virological and Entomological Surveillance. PLoS ONE. 2018;13:e0194108. doi: 10.1371/journal.pone.0194108.
    1. da Costa C.F., da Silva A.V., do Nascimento V.A., de Souza V.C., Monteiro D.C.d.S., Terrazas W.C.M., dos Passos R.A., Nascimento S., Lima J.B.P., Naveca F.G. Evidence of Vertical Transmission of Zika Virus in Field-Collected Eggs of Aedes Aegypti in the Brazilian Amazon. PLoS Negl. Trop. Dis. 2018;12:e0006594. doi: 10.1371/journal.pntd.0006594.
    1. Farraudière L., Sonor F., Crico S., Étienne M., Mousson L., Hamel R., Missé D., Failloux A.-B., Simard F., Yébakima A. First Detection of Dengue and Chikungunya Viruses in Natural Populations of Aedes Aegypti in Martinique during the 2013–2015 Concomitant Outbreak TT—Primera Detección Del Virus Del Dengue y Del Chikungunya En Poblaciones Naturales de Aedes Aegypti En. Rev. Panam. Salud Pública. 2017;41:e63. doi: 10.26633/RPSP.2017.63.
    1. Juliano S.A., Ribeiro G.S., Maciel-de-Freitas R., Castro M.G., Codeço C., Lourenço-de-Oliveira R., Lounibos L.P. She’s a Femme Fatale: Low-Density Larval Development Produces Good Disease Vectors. Mem. Inst. Oswaldo Cruz. 2014;109:1070–1077. doi: 10.1590/0074-02760140455.
    1. Ferreira-de-Brito A., Ribeiro I.P., de Miranda R.M., Fernandes R.S., Campos S.S., da Silva K.A.B., de Castro M.G., Bonaldo M.C., Brasil P., Lourenço-de-Oliveira R. First Detection of Natural Infection of Aedes Aegypti with Zika Virus in Brazil and throughout South America. Mem. Inst. Oswaldo Cruz. 2016;111:655–658. doi: 10.1590/0074-02760160332.
    1. Ayllón T., Campos R.D.M., Brasil P., Morone F.C., Câmara D.C.P., Meira G.L.S., Tannich E., Yamamoto K.A., Carvalho M.S., Pedro R.S., et al. Early Evidence for Zika Virus Circulation among Aedes Aegypti Mosquitoes, Rio de Janeiro, Brazil. Emerg. Infect. Dis. 2017;23:1411–1412. doi: 10.3201/eid2308.162007.
    1. Cevallos V., Ponce P., Waggoner J.J., Pinsky B.A., Coloma J., Quiroga C., Morales D., Cárdenas M.J. Zika and Chikungunya Virus Detection in Naturally Infected Aedes Aegypti in Ecuador. Acta Trop. 2018;177:74–80. doi: 10.1016/j.actatropica.2017.09.029.
    1. Thavara U., Tawatsin A., Pengsakul T., Bhakdeenuan P., Chanama S., Anantapreecha S., Molito C., Chompoosri J., Thammapalo S., Sawanpanyalert P., et al. Outbreak of Chikungunya Fever in Thailand and Virus Detection in Field Population of Vector Mosquitoes, Aedes aegypti (L.) and Aedes Albopictus Skuse (Diptera: Culicidae) Southeast Asian J. Trop. Med. Public Health. 2009;40:951–962.
    1. Lorenz C., Castro M.C., Trindade P.M.P., Nogueira M.L., de Oliveira Lage M., Quintanilha J.A., Parra M.C., Dibo M.R., Fávaro E.A., Guirado M.M., et al. Predicting Aedes Aegypti Infestation Using Landscape and Thermal Features. Sci. Rep. 2020;10:21688. doi: 10.1038/s41598-020-78755-8.

Source: PubMed

3
Abonnieren