Systematic Review: Land Cover, Meteorological, and Socioeconomic Determinants of Aedes Mosquito Habitat for Risk Mapping

Mohamed F Sallam, Chelsea Fizer, Andrew N Pilant, Pai-Yei Whung, Mohamed F Sallam, Chelsea Fizer, Andrew N Pilant, Pai-Yei Whung

Abstract

Asian tiger and yellow fever mosquitoes (Aedes albopictus and Ae. aegypti) are global nuisances and are competent vectors for viruses such as Chikungunya (CHIKV), Dengue (DV), and Zika (ZIKV). This review aims to analyze available spatiotemporal distribution models of Aedes mosquitoes and their influential factors. A combination of five sets of 3-5 keywords were used to retrieve all relevant published models. Five electronic search databases were used: PubMed, MEDLINE, EMBASE, Scopus, and Google Scholar through 17 May 2017. We generated a hierarchical decision tree for article selection. We identified 21 relevant published studies that highlight different combinations of methodologies, models and influential factors. Only a few studies adopted a comprehensive approach highlighting the interaction between environmental, socioeconomic, meteorological and topographic systems. The selected articles showed inconsistent findings in terms of number and type of influential factors affecting the distribution of Aedes vectors, which is most likely attributed to: (i) limited availability of high-resolution data for physical variables, (ii) variation in sampling methods; Aedes feeding and oviposition behavior; (iii) data collinearity and statistical distribution of observed data. This review highlights the need and sets the stage for a rigorous multi-system modeling approach to improve our knowledge about Aedes presence/abundance within their flight range in response to the interaction between environmental, socioeconomic, and meteorological systems.

Keywords: Aedes; Zika; dengue; ecological modeling; physical systems.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Hierarchical decision tree used in article selection.
Figure 2
Figure 2
Research design for generating a risk map of Ae. aegypti presence/abundance in city of Brownsville, TX. CGIAR-CCAFS: Consultative Group for International Agricultural Research-Climate Change Agriculture and Food Security; NAIP: National Agriculture Imagery Program.

References

    1. WHO . World Health Organization Report. WHO; Geneva, Switzerland: 2004. The global burden of disease: 2004 update.
    1. WHO . World Health Organization Report. WHO; Geneva, Switzerland: 2013. World health statistics 2013.
    1. Lance-Parker S., Rebmann C., Kramer S., Kelly R. Arboviruses in Georgia. Emergence of West Nile virus. J. Med. Assoc. Ga. 2002;91:32–34.
    1. Clements A., Paterson G. The analysis of mortality and survival rates in wild populations of mosquitoes. J. Appl. Ecol. 1981;18:373–399. doi: 10.2307/2402401.
    1. Clements A.N. The Biology of Mosquitoes: Sensory, Reception, and Behaviour. CABI; New York, NY, USA: 1999.
    1. Clements A.N. The Biology of Mosquitoes, Sensory Reception and Behaviour. Volume 2 CAB International; Wallingford, UK: 1999.
    1. Marini F., Caputo B., Pombi M., Tarsitani G., Della Torre A. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark–release–recapture experiments. Med. Vet. Entomol. 2010;24:361–368. doi: 10.1111/j.1365-2915.2010.00898.x.
    1. David M.R., Lourenço-de-Oliveira R., Freitas R.M.D. Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighbourhood of Rio de Janeiro: Presumed influence of differential urban structure on mosquito biology. Mem. Inst. Oswaldo Cruz. 2009;104:927–932. doi: 10.1590/S0074-02762009000600019.
    1. Rochlin I., Ninivaggi D.V., Hutchinson M.L., Farajollahi A. Climate Change and Range Expansion of the Asian Tiger Mosquito (Aedes albopictus) in Northeastern USA: Implications for Public Health Practitioners. PLoS ONE. 2013;8:e60874. doi: 10.1371/journal.pone.0060874.
    1. Benedict M.Q., Levine R.S., Hawley W.A., Lounibos L.P. Spread of The Tiger: Global Risk of Invasion by The Mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 2007;7:76–85. doi: 10.1089/vbz.2006.0562.
    1. Kraemer M.U.G., Sinka M.E., Duda K.A., Mylne A.Q.N., Shearer F.M., Barker C.M., Moore C.G., Carvalho R.G., Coelho G.E., Van Bortel W., et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015;4:e08347. doi: 10.7554/eLife.08347.
    1. Delatte H., Desvars A., Bouétard A., Bord S., Gimonneau G., Vourc’h G., Fontenille D. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector Borne Zoonotic Dis. 2010;10 doi: 10.1089/vbz.2009.0026.
    1. Sivan A., Shriram A.N., Sunish I.P., Vidhya P.T. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India. Parasitol. Res. 2015;114:3539–3546. doi: 10.1007/s00436-015-4634-5.
    1. GDCH Georgia Department of Community Health. Mosquito-Borne Viral Diseases Web Page. [(accessed on 16 October 2017)]; Available online: .
    1. Godsey M.S., Blackmore M.S., Panella N.A., Burkhalter K., Gottfried K., Halsey L.A., Rutledge R., Langevin S.A., Gates R., Lamonte K.M. West Nile epizootiology in the southeastern United States, 2001. Vector-Borne Zoonotic Dis. 2005;5:82–89. doi: 10.1089/vbz.2005.5.82.
    1. DeGroote J., Mercer D.R., Fisher J., Sugumaran R. Spatiotemporal Investigation of Adult Mosquito (Diptera: Culicidae) Populations in an Eastern Iowa County, USA. J. Med. Entomol. 2007;44:1139–1150. doi: 10.1093/jmedent/44.6.1139.
    1. Brady O.J., Golding N., Pigott D.M., Kraemer M.U.G., Messina J.P., Reiner R.C., Jr., Scott T.W., Smith D.L., Gething P.W., Hay S.I. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors. 2014;7:338. doi: 10.1186/1756-3305-7-338.
    1. Brady O.J., Johansson M.A., Guerra C.A., Bhatt S., Golding N., Pigott D.M., Delatte H., Grech M.G., Leisnham P.T., Maciel-de-Freitas R., et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites Vectors. 2013;6:351. doi: 10.1186/1756-3305-6-351.
    1. Fischer D., Thomas S.M., Suk J.E., Sudre B., Hess A., Tjaden N.B., Beierkuhnlein C., Semenza J.C. Climate change effects on Chikungunya transmission in Europe: Geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int. J. Health Geogr. 2013;12:51. doi: 10.1186/1476-072X-12-51.
    1. Kobayashi M., Nihei N., Kurihara T. Analysis of Northern Distribution of Aedes albopictus (Diptera: Culicidae) in Japan by Geographical Information System. J. Med. Entomol. 2002;39:4–11. doi: 10.1603/0022-2585-39.1.4.
    1. Brady O., Gething P., Bhatt S., Messina J., Brownstein J., Hoen A., Moyes C., Farlow A., Scott T., Hay S. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 2012;6:e1760. doi: 10.1371/journal.pntd.0001760.
    1. Brady O., Messina J., Scott T., Hay S. Mapping the global epidemiology of dengue. In: Gubler D.J., Ooi E.E., Vasudevan S., Farrar J., editors. Dengue and Dengue Hemorrhagic Fever. 2nd ed. CABI; Wallingford, UK: 2014. pp. 30–49.
    1. Fischer D., Thomas S.M., Neteler M., Tjaden N.B., Beierkuhnlein C. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: Comparison of mechanistic and correlative niche modelling approaches. Euro Surveill. 2014;19:20696. doi: 10.2807/1560-7917.ES2014.19.6.20696.
    1. Fischer S., Alem I., De Majo M., Campos R., Schweigmann N. Cold season mortality and hatching behavior of Aedes aegypti L. (Diptera: Culicidae) eggs in Buenos Aires City, Argentina. J. Vector Ecol. 2011;36:94–99. doi: 10.1111/j.1948-7134.2011.00145.x.
    1. Caminade C., Ndione J.A., Diallo M., MacLeod D.A., Faye O., Ba Y., Dia I., Morse A.P. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions. Int. J. Environ. Res. Public Health. 2014;11:903–918. doi: 10.3390/ijerph110100903.
    1. Campbell L.P., Luther C., Moo-Llanes D., Ramsey J.M., Danis-Lozano R., Peterson A.T. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370 doi: 10.1098/rstb.2014.0135.
    1. Buckner E.A., Blackmore M.S., Golladay S.W., Covich A.P. Weather and landscape factors associated with adult mosquito abundance in southwestern Georgia, U.S.A. J. Vector Ecol. 2011;36:269–278. doi: 10.1111/j.1948-7134.2011.00167.x.
    1. Hayden M.H., Uejio C.K., Walker K., Ramberg F., Moreno R., Rosales C., Gameros M., Mearns L.O., Zielinski-Gutierrez E., Janes C.R. Microclimate and Human Factors in the Divergent Ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX Border. EcoHealth. 2010;7:64–77. doi: 10.1007/s10393-010-0288-z.
    1. Landau K.I., van Leeuwen W.J.D. Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona. J. Vector Ecol. 2012;37:407–418. doi: 10.1111/j.1948-7134.2012.00245.x.
    1. Lockaby G., Noori N., Morse W., Zipperer W., Kalin L., Governo R., Sawant R., Ricker M. Climatic, ecological, and socioeconomic factors associated with West Nile virus incidence in Atlanta, Georgia, U.S.A. J. Vector Ecol. 2016;41:232–243. doi: 10.1111/jvec.12218.
    1. Reiter M.E., LaPointe D.A. Landscape Factors Influencing the Spatial Distribution and Abundance of Mosquito Vector Culex quinquefasciatus (Diptera: Culicidae) in a Mixed Residential–Agricultural Community in Hawai‘i. J. Med. Entomol. 2007;44:861–868. doi: 10.1603/0022-2585(2007)44[861:LFITSD];2.
    1. Rey J.R., Nishimura N., Wagner B., Braks M.A., O’Connell S.M., Lounibos L.P. Habitat Segregation of Mosquito Arbovirus Vectors in South Florida. J. Med. Entomol. 2006;43:1134–1141. doi: 10.1093/jmedent/43.6.1134.
    1. Richards S.L., Apperson C.S., Ghosh S.K., Cheshire H.M., Zeichner B.C. Spatial Analysis of Aedes albopictus (Diptera: Culicidae) Oviposition in Suburban Neighborhoods of a Piedmont Community in North Carolina. J. Med. Entomol. 2006;43:976–989. doi: 10.1093/jmedent/43.5.976.
    1. Robert M.A., Christofferson R.C., Silva N.J.B., Vasquez C., Mores C.N., Wearing H.J. Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas: The Case of Dengue in Miami. PLoS ONE. 2016;11:e0161365. doi: 10.1371/journal.pone.0161365.
    1. Rochlin I., Turbow D., Gomez F., Ninivaggi D.V., Campbell S.R. Predictive Mapping of Human Risk for West Nile Virus (WNV) Based on Environmental and Socioeconomic Factors. PLoS ONE. 2011;6:e23280. doi: 10.1371/journal.pone.0023280.
    1. Sallam M.F., Xue R.-D., Pereira R.M., Koehler P.G. Ecological niche modeling of mosquito vectors of West Nile virus in St. John’s County, Florida, USA. Parasites Vectors. 2016;9:371. doi: 10.1186/s13071-016-1646-7.
    1. Monaghan A.J., Morin C.W., Steinhoff D.F., Wilhelmi O., Hayden M., Quattrochi D.A., Reiskind M., Lloyd A.L., Smith K., Schmidt C.A., et al. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States. PLoS Curr. 2016;8 doi: 10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76.
    1. Ashby J., Moreno-Madriñán M., Yiannoutsos C., Stanforth A. Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and Boosted Regression Trees. Remote Sens. 2017;9:328. doi: 10.3390/rs9040328.
    1. Gleiser R.M., Zalazar L.P. Distribution of mosquitoes in relation to urban landscape characteristics. Bull. Entomol. Res. 2010;100:153–158. doi: 10.1017/S0007485309006919.
    1. Koyadun S., Butraporn P., Kittayapong P. Ecologic and Sociodemographic Risk Determinants for Dengue Transmission in Urban Areas in Thailand. Int. Perspect. Infect. Dis. 2012;2012:12. doi: 10.1155/2012/907494.
    1. Rubio A., Cardo M.V., Carbajo A.E., Vezzani D. Imperviousness as a predictor for infestation levels of container-breeding mosquitoes in a focus of dengue and Saint Louis encephalitis in Argentina. Acta Trop. 2013;128:680–685. doi: 10.1016/j.actatropica.2013.09.015.
    1. Troyo A., Fuller D.O., Calderón-Arguedas O., Beier J.C. A geographical sampling method for surveys of mosquito larvae in an urban area using high-resolution satellite imagery. J. Vector Ecol. J. Soc. Vector Ecol. 2008;33:1–7. doi: 10.3376/1081-1710(2008)33[1:AGSMFS];2.
    1. Wijayanti S.P.M., Porphyre T., Chase-Topping M., Rainey S.M., McFarlane M., Schnettler E., Biek R., Kohl A. The Importance of Socio-Economic Versus Environmental Risk Factors for Reported Dengue Cases in Java, Indonesia. PLoS Negl. Trop. Dis. 2016;10:e0004964. doi: 10.1371/journal.pntd.0004964.
    1. Zhou G., Munga S., Minakawa N., Githeko A.K., Yan G. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am. J. Trop. Med. Hyg. 2007;77:29–35.
    1. Massad E., Tan S.-H., Khan K., Wilder-Smith A. Estimated Zika virus importations to Europe by travellers from Brazil. Glob. Health Action. 2016;9 doi: 10.3402/gha.v9.31669.
    1. Messina J.P., Kraemer M.U.G., Brady O.J., Pigott D.M., Shearer F.M., Weiss D.J., Golding N., Ruktanonchai C.W., Gething P.W., Cohn E., et al. Mapping global environmental suitability for Zika virus. eLife. 2016;5:e15272. doi: 10.7554/eLife.15272.
    1. Manrique P.D., Xu C., Hui P.M., Johnson N.F. Atypical viral dynamics from transport through popular places. Phys. Rev. 2016;94 doi: 10.1103/PhysRevE.94.022304.
    1. Sallam M.F., Lippi C., Xue R.-D. Spatial analysis of arbovirus transmisson in St. Johns County, Florida. Tech. Bull. Fla. Mosq. Control Assoc. 2016;10:18–29.
    1. Sallam M.F., Michaels S.R., Riegel C., Tian Y., Pereira R.M., Koehler P.G. Habitat suitability model and risk assessment of Zika Virus mosquito vectors in city of New Orleans, LA, USA. in preparation.
    1. Sallam M.F., Michaels S.R., Riegel C., Pereira R.M., Zipperer W., Lockaby B.G., Koehler P.G. Spatio-Temporal Distribution of Vector-Host Contact (VHC) Ratios and Ecological Niche Modelingof the West Nile Virus Mosquito Vector, Culex quinquefasciatus, in the City of New Orleans, LA, USA. Int. J. Environ. Res. Public Health. 2017;14:892. doi: 10.3390/ijerph14080892.
    1. Honório N.A., Silva W.D.C., Leite P.J., Gonçalves J.M., Lounibos L.P., Lourenço-de-Oliveira R. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz. 2003;98:191–198. doi: 10.1590/S0074-02762003000200005.
    1. Reiter P., Amador M.A., Anderson R.A., Clark G.G. Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 1995;52:177–179. doi: 10.4269/ajtmh.1995.52.177.
    1. Moore C.G., Cline B.L., Ruiz-Tibén E., Lee D., Romney-Joseph H., Rivera-Correa E. Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am. J. Trop. Med. Hyg. 1978;27:1225–1231. doi: 10.4269/ajtmh.1978.27.1225.
    1. Aiken S.R., Frost D.B., Leigh C.H. Dengue hemorrhagic fever and rainfall in Peninsular Malaysia: Some suggested relationships. Soc. Sci. Med. Part D Med. Geogr. 1980;14:307–316. doi: 10.1016/0160-8002(80)90043-X.
    1. Chadee D.D. Aedes aegypti surveillance in Tobago, West Indies (1983–1988) J. Am. Mosquito Control Assoc. 1990;6:148–150.
    1. Scott T.W., Morrison A.C., Lorenz L.H., Clark G.G., Strickman D., Kittayapong P., Zhou H., Edman J.D. Longitudinal Studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Population Dynamics. J. Med. Entomol. 2000;37:77–88. doi: 10.1603/0022-2585-37.1.77.
    1. Focks D.A., Daniels E., Haile D.G., Keesling J.E. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am. J. Trop. Med. Hyg. 1995;53:489–506. doi: 10.4269/ajtmh.1995.53.489.
    1. Jetten T.H., Focks D.A. Changes in the distribution of dengue transmission under climate warming scenarios. Am. J. Trop. Med. Hyg. 1997;57:285–297. doi: 10.4269/ajtmh.1997.57.285.
    1. Koopman J.S., Prevots D.R., Vaca Marin M.A., Gomez Dantes H., Zarate Aquino M.L., Longini I.M.J., Sepulveda Amor J. Determinants and predictors of dengue infection in Mexico. Am. J. Epidemiol. 1991;133:1168–1178. doi: 10.1093/oxfordjournals.aje.a115829.
    1. Herrera-Basto E., Prevots D.R., Zarate M.L., Silva J.L., Sepulveda-Amor J. First Reported Outbreak of Classical Dengue Fever at 1700 Meters above Sea Level in Guerrero State, Mexico, June 1988. Am. J. Trop. Med. Hyg. 1992;46:649–653. doi: 10.4269/ajtmh.1992.46.649.
    1. Hylton A.R. Low humidity water-retention ability in Eretmapodites chrysogaster and Aedes albopictus. J. Insect Physiol. 1967;13:153–157. doi: 10.1016/0022-1910(67)90011-X.
    1. Ruiz M.O., Tedesco C., McTighe T.J., Austin C., Kitron U.D. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int. J. Health Geogr. 2004;3:8. doi: 10.1186/1476-072X-3-8.
    1. Harrigan R.J., Thomassen H.A., Buermann W., Cummings R.F., Kahn M.E., Smith T.B. Economic Conditions Predict Prevalence of West Nile Virus. PLoS ONE. 2010;5:e15437. doi: 10.1371/journal.pone.0015437.
    1. Reisen W.K., Takahashi R.M., Carroll B.D., Quiring R. Delinquent Mortgages, Neglected Swimming Pools, and West Nile Virus, California. Emerg. Infect. Dis. 2008;14:1747–1749. doi: 10.3201/eid1411.080719.
    1. Horwitz P., Wilcox B.A. Parasites, ecosystems and sustainability: An ecological and complex systems perspective. Int. J. Parasitol. 2005;35:725–732. doi: 10.1016/j.ijpara.2005.03.002.
    1. Chao D., Lu Y., Lin T., Chu P., Chang S., Huang J., Chen K., King C. Predisposing factors of dengue cases by random effect model in the largest dengue haemorrhagic fever epidemic in Taiwan in 1998. Dengue Bull. 2000;24:46–52.
    1. Thammapalo S., Supaporn M., Virasakdi C. Effectiveness of Space Spraying on the Transmission of Dengue/Dengue Hemorrhagic Fever (Df/Dhf) in an Urban Area of Southern Thailand. J. Trop. Med. 2012;2012:7. doi: 10.1155/2012/652564.
    1. Barker C.M., Paulson S.L., Cantrell S., Davis B.S. Habitat Preferences and Phenology of Ochlerotatus triseriatus and Aedes albopictus (Diptera: Culicidae) in Southwestern Virginia. J. Med. Entomol. 2003;40:403–410. doi: 10.1603/0022-2585-40.4.403.
    1. Swanson J., Lancaster M., Anderson J., Crandell M., Haramis L., Grimstad P., Kitron U. Overwintering and establishment of Aedes albopictus (Diptera: Culicidae) in an urban La Crosse Virus enzootic site in Illinois. J. Med. Entomol. 2000;37:454–460. doi: 10.1093/jmedent/37.3.454.
    1. Jemal Y., Al-Thukair A.A. Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia. Saudi J. Biol. Sci. 2016 doi: 10.1016/j.sjbs.2016.04.001.
    1. Dixon P. A Primer of Ecological Statistics by Nicholas J. Gotelli and Aaron M. Ellison. Q. Rev. Biol. 2014;89:168–169. doi: 10.1086/676062.
    1. Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x.
    1. Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008;77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x.
    1. Elith J., Phillips S.J., Hastie T., Dudik M., Chee Y.E., Yates C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x.
    1. Phillips S.J., Dudík M., Elith J., Graham C.H., Lehmann A., Leathwick J., Ferrier S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 2009;19:181–197. doi: 10.1890/07-2153.1.
    1. Sallam M.F., Al Ahmed A.M., Abdel-Dayem M.S., Abdullah M.A.R. Ecological Niche Modeling and Land Cover Risk Areas for Rift Valley Fever Vector, Culex tritaeniorhynchus Giles in Jazan, Saudi Arabia. PLoS ONE. 2013;8:e65786. doi: 10.1371/journal.pone.0065786.
    1. Pickard B.R., Daniel J., Mehaffey M., Jackson L.E., Neale A. EnviroAtlas: A new geospatial tool to foster ecosystem services science and resource management. Ecosyst. Serv. 2015;14:45–55. doi: 10.1016/j.ecoser.2015.04.005.

Source: PubMed

3
Abonnieren