The association between dengue case and climate: A systematic review and meta-analysis

Nur Athen Mohd Hardy Abdullah, Nazri Che Dom, Siti Aekball Salleh, Hasber Salim, Nopadol Precha, Nur Athen Mohd Hardy Abdullah, Nazri Che Dom, Siti Aekball Salleh, Hasber Salim, Nopadol Precha

Abstract

Although previous research frequently indicates that climate factors impact dengue transmission, the results are inconsistent. Therefore, this systematic review and meta-analysis highlights and address the complex global health problems towards the human-environment interface and the inter-relationship between these variables. For this purpose, four online electronic databases were searched to conduct a systematic assessment of published studies reporting the association between dengue cases and climate between 2010 and 2022. The meta-analysis was conducted using random effects to assess correlation, publication bias and heterogeneity. The final assessment included eight studies for both systematic review and meta-analysis. A total of four meta-analyses were conducted to evaluate the correlation of dengue cases with climate variables, namely precipitation, temperature, minimum temperature and relative humidity. The highest correlation is observed for precipitation between 83 mm and 15 mm (r = 0.38, 95% CI = 0.31, 0.45), relative humidity between 60.5% and 88.7% (r = 0.30, 95% CI = 0.23, 0.37), minimum temperature between 6.5 °C and 21.4 °C (r = 0.28, 95% CI = 0.05, 0.48) and mean temperature between 21.0 °C and 29.8 °C (r = 0.07, 95% CI = -0.1, 0.24). Thus, the influence of climate variables on the magnitude of dengue cases in terms of their distribution, frequency, and prevailing variables was established and conceptualised. The results of this meta-analysis enable multidisciplinary collaboration to improve dengue surveillance, epidemiology, and prevention programmes.

Keywords: Climate; Dengue cases; Systematic review; meta-analysis.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

© 2022 The Authors.

Figures

Fig. 1
Fig. 1
PRISMA guideline-based article selection flowchart.
Fig. 2
Fig. 2
Meta-analysis of climate variables and dengue incidence. Figure: (A) = precipitation; (B) relative humidity; (C) minimum temperature; (D) mean temperature. Note: The box size in the graph reflects each study's relative weight.

References

    1. Brady O.J., Gething P.W., Bhatt S., Messina J.P., Brownstein J.S., Hoen A.G., Moyes C.L., Farlow A.W., Scott T.W., Hay S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 2012;6(8) doi: 10.1371/journal.pntd.0001760.
    1. Rogers D.J., Randolph S.E. Climate change and vector-borne diseases. Adv. Parasitol. 2006;62:345–381. doi: 10.1016/S0065-308X(05)62010-6.
    1. Ebi K.L., Nealon J. Dengue in a changing climate. Environ. Res. 2016;151:115–123. doi: 10.1016/j.envres.2016.07.026.
    1. Messina J.P., Brady O.J., Golding N., Kraemer M., Wint G., Ray S.E., Pigott D.M., Shearer F.M., Johnson K., Earl L., Marczak L.B., Shirude S., Davis Weaver N., Gilbert M., Velayudhan R., Jones P., Jaenisch T., Scott T.W., Jr Reiner R.C., Hay S.L. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019;4(9):1508–1515. doi: 10.1038/s41564-019-0476-8.
    1. Ryan S.J., Carlson C.J., Mordecai E.A., Johnson L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019;13(3) doi: 10.1371/journal.pntd.0007213.
    1. Colon-Gonzalez F.J., Harris I., Osborn T.J., Bernardo C. Steiner São, Peres C.A., Hunter P.R., Lake I.R. Limiting global-mean temperature increase to 1.5-2 degrees C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc. Natl. Acad. Sci. U. S. A. 2018;115(24):6243–6248. doi: 10.1073/pnas.1718945115.
    1. WHO . 2012. Global Strategy for Dengue Prevention and Control, 2012–2020 WHO. Geneva.
    1. Misslin R., Telle O., Daude E., Vaguet A., Paul R.E. Urban climate versus global climate change-what makes the difference for dengue? Ann. N. Y. Acad. Sci. 2016;1382(1):56–72. doi: 10.1111/nyas.13084.
    1. Kurniawan W., Suwandono A., Widjanarko B., Suwondo A., Artama W.T., Shaluhiyah Z., Adi M.S., Sofro M.A.U. The effectiveness of the One Health SMART approach on dengue vector control in Majalengka, Indonesia. J. Health Res. 2020;35(1):63–75. doi: 10.1108/jhr-07-2019-0162.
    1. WHO . One Health, WHO; Geneva: 2022. Ending the Neglect to Attain the Sustainable Development Goals.
    1. Saputra M., Oktaviannoor H. One Health approach to dengue Haemorrhagic fever control in Indonesia: a systematic review. KnE Life Sci. 2018;4(1):201. doi: 10.18502/kls.v4i1.1382.
    1. Lee H.L., Rohani A., Khadri M.S., Nazni W.A., Rozilawati H., Nurulhusna A.H., Nor Afizah A.H., Roziah A., Rosilawati R., The C.H.R. Dengue vector control in Malaysia- challenges and recent advances. IIUM. Med. J. Malays. 2015;14(1) doi: 10.31436/imjm.v14i1.448.
    1. Yang S., Kou S.C., Lu F., Brownstein J.S., Brooke N., Santillana M. Advances in using internet searches to track dengue. PLoS Comput. Biol. 2017;13(7) doi: 10.1371/journal.pcbi.1005607.
    1. Hii Y.L., Zhu H., Ng N., Ng L.C., Rocklov J. Forecast of dengue incidence using temperature and rainfall. PLoS Negl. Trop. Dis. 2012;6(11) doi: 10.1371/journal.pntd.0001908.
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015;4(1) doi: 10.1186/2046-4053-4-1.
    1. Higgins J.P.T. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557.
    1. Begg C.B., Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–1101.
    1. Egger M., Davey Smith G., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–634. doi: 10.1136/bmj.315.7109.629.
    1. Faruk M.O., Jannat S.N., Rahman M.S. Impact of environmental factors on the spread of dengue fever in Sri Lanka. Int. J. Environ. Sci. Technol. 2022:1–12. doi: 10.1007/s13762-021-03905-y. Advance online publication.
    1. Francisco M.E., Carvajal T.M., Ryo M., Nukazawa K., Amalin D.M., Watanabe K. Dengue disease dynamics are modulated by the combined influences of precipitation and landscape: a machine learning approach. Sci. Total Environ. 2021;792 doi: 10.1016/j.scitotenv.2021.148406.
    1. Polwiang S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017) BMC Infect. Dis. 2020;20(1):208. doi: 10.1186/s12879-020-4902-6.
    1. Yu A.K.D., Ytienza S.I.E., Yu A.M.D., Yu V.C.S., Wangkay K.A.K., Wong M.A.R., Zamudio M.A.B., Zhang E.M.T., Yumul W.D., Zipagan Z.M.R., Yaranon A.K.R., Zapanta J.B.C., Ysip G.B., Duque-Lee C.D. Correlation between incidence of dengue and climatic factors in the Philippines: an ecological study. UERM Health Sci. J. 2020;9(2):60.
    1. Sang S., Gu S., Bi P., Yang W., Yang Z., Xu L., Yang J., Liu X., Jiang T., Wu H., Chu C., Liu Q. Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014. PLoS Negl. Trop. Dis. 2015;9(5) doi: 10.1371/journal.pntd.0003808.
    1. Shen J.C., Luo L., Li L., Jing Q.L., Ou C.Q., Yang Z.C., Chen X.G. The impacts of mosquito density and meteorological factors on dengue fever epidemics in Guangzhou, China, 2006-2014: a time-series analysis. Biomed. Environ. Sci. 2015;28(5):321–329. doi: 10.3967/bes2015.046.
    1. Eisen L., García-Rejón J.E., Gómez-Carro S., Nájera Vázquez M., Keefe T.J., Beaty B.J., Loroño-Pino M.A. Temporal correlations between mosquito-based dengue virus surveillance measures or indoor mosquito abundance and dengue case numbers in Mérida City, México. J. Med. Entomol. 2014;51(4):885–890. doi: 10.1603/me14008.
    1. Wongkoon S., Jaroensutasinee M., Jaroensutasinee K. Weather factors influencing the occurrence of dengue fever in Nakhon Si Thammarat, Thailand. Trop. Biomed. 2013;30(4):631–641.
    1. Hu W., Nicholls N., Lindsay M., Dale P., McMichael A.J., Mackenzie J.S., Tong S. Development of a predictive model for ross river virus disease in Brisbane, Australia. Am. J. Trop. Med. 2004;71(2):129–137.
    1. Camargo C., Alfonso-Parra C., Díaz S., Rincon D.F., Ramírez-Sánchez L.F., Agudelo J., Barrientos L.M., Villa-Arias S., Avila F.W. Spatial and temporal population dynamics of male and female Aedes albopictus at a local scale in Medellín, Colombia. Parasit. Vectors. 2021;14(1):312. doi: 10.1186/s13071-021-04806-2.
    1. Romiti F., Ermenegildi A., Magliano A., Rombolà P., Varrenti D., Giammattei R., Gasbarra S., Ursino S., Casagni L., Scriboni A., Puro V., Ruta A., Brignola L., Fantasia O., Corpolongo D., Di Luzio G., De Liberato C. Aedes albopictus (diptera: culicidae) monitoring in the Lazio region (Central Italy) J. Med. Entomol. 2021;58(2):847–856. doi: 10.1093/jme/tjaa222.
    1. Che-Mendoza A., Martin-Park A., Chávez-Trava J.M., Contreras-Perera Y., Delfín-González H., González-Olvera G., Leirana-Alcocer J., Guillermo-May G., Chan-Espinoza D., Pavia-Ruz N., Méndez-Vales R.E., Alcocer-Gamboa A., Correa-Morales F., Palacio-Vargas J., Zhang D., Vazquez-Prokopec G., Xi Z., Manrique-Saide P. Abundance and seasonality of Aedes aegypti (diptera: culicidae) in two suburban localities of South Mexico, with implications for Wolbachia (rickettsiales: rickettsiaceae)-carrying male releases for population suppression. J. Med. Entomol. 2021;58(4):1817–1825. doi: 10.1093/jme/tjab052.
    1. Yang B., Borgert B.A., Alto B.W., Boohene C.K., Brew J., Deutsch K., DeValerio J.T., Dinglasan R.R., Dixon D., Faella J.M., Fisher-Grainger S.L., Glass G.E., Hayes R., Hoel D.F., Horton A., Janusauskaite A., Kellner B., Kraemer M., Lucas K.J., Medina J., Cummings D. Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Negl. Trop. Dis. 2021;15(3) doi: 10.1371/journal.pntd.0009063.
    1. Sallam M.F., Fizer C., Pilant A.N., Whung P.Y. Systematic review: land cover, meteorological, and socioeconomic determinants of Aedes mosquito habitat for risk mapping. Int. J. Environ. Res. Public Health. 2017;14(10):1230. doi: 10.3390/ijerph14101230.
    1. Surendran S.N., Jayadas T.T.P., Thiruchenthooran V., Raveendran S., Tharsan A., Santhirasegaram S., Sivabalakrishnan K., Karunakaran S., Ponnaiah B., Gomes L., Malavige G.N., Ramasamy R. Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka, Parasit. Vectors. 2021;14(1) doi: 10.1186/s13071-021-04640-6.
    1. Seidahmed O.M., Eltahir E.A. A sequence of flushing and drying of breeding habitats of Aedes aegypti (L.) prior to the low dengue season in Singapore. PLoS Negl. Trop. Dis. 2016;10(7) doi: 10.1371/journal.pntd.0004842.
    1. Martin J.L., Lippi C.A., Stewart-Ibarra A.M., Ayala E.B., Mordecai E.A., Sippy R., Heras F.H., Blackburn J.K., Ryan S.J. Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador. PLoS Negl. Trop. Dis. 2021;15(11) doi: 10.1371/journal.pntd.0009931.
    1. Nosrat C., Altamirano J., Anyamba A., Caldwell J.M., Damoah R., Mutuku F., Ndenga B., LaBeaud A.D. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl. Trop. Dis. 2021;15(3) doi: 10.1371/journal.pntd.0009182.
    1. Davis R.E., McGregor G.R., Enfield K.B. Humidity: a review and primer on atmospheric moisture and human health. Environ. Res. 2016;144:106–116. doi: 10.1016/j.envres.2015.10.014.
    1. Legg R. Properties of humid air. Air Condition. Syst. Design. 2017:1–28. doi: 10.1016/b978-0-08-101123-2.00001-7.
    1. Monintja T.C.N., Arsin A., Amiruddin R., Syafar M. Analysis of temperature and humidity on dengue hemorrhagic fever in Manado municipality. Gac. Sanit. 2021;35:S330–S333. doi: 10.1016/j.gaceta.2021.07.020.
    1. Ridha M.R., Indriyati L., Tomia A., Juhairiyah J. Pengaruh iklim terhadap kejadian demam berdarah dengue di Kota Ternate. SPIRAKEL. 2020;11(2):53–62. doi: 10.22435/spirakel.v11i2.1984.
    1. Liu-Helmersson J., Stenlund H., Wilder-Smith A., Rocklöv J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS One. 2014;9(3) doi: 10.1371/journal.pone.0089783.
    1. Mordecai E.A., Caldwell J.M., Grossman M.K., Lippi C.A., Johnson L.R., Neira M., Rohr J.R., Ryan S.J., Savage V., Shocket M.S., Sippy R., Stewart Ibarra A.M., Thomas M.B., Villena O. Thermal biology of mosquito-borne disease. Ecol. Lett. 2019;22(10):1690–1708. doi: 10.1111/ele.13335.
    1. Brady O.J., Johansson M.A., Guerra C.A., Bhatt S., Golding N., Pigott D.M., Delatte H., Grech M.G., Leisnham P.T., Maciel-de-Freitas R., Styer L.M., Smith D.L., Scott T.W., Gething P.W., Hay S.I. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit. Vectors. 2013;6:351. doi: 10.1186/1756-3305-6-351.
    1. Nagao Y., Thavara U., Chitnumsup P., Tawatsin A., Chansang C., Campbell-Lendrum D. Climatic and social risk factors for Aedes infestation in rural Thailand. Tropical Med. Int. Health. 2003;8(7):650–659. doi: 10.1046/j.1365-3156.2003.01075.x.
    1. Lounibos L.P., Kramer L.D. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J. Infect. Dis. 2016;214(Suppl. 5):S453–S458. doi: 10.1093/infdis/jiw285.
    1. Muttis E., Balsalobre A., Chuchuy A., Mangudo C., Ciota A.T., Kramer L.D., Micieli M.V. Factors related to Aedes aegypti (diptera: culicidae) populations and temperature determine differences on life-history traits with regional implications in disease transmission. J. Med. Entomol. 2018;55(5):1105–1112. doi: 10.1093/jme/tjy057.
    1. Bonizzoni M., Gasperi G., Chen X., James A.A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013;29(9):460–468. doi: 10.1016/j.pt.2013.07.003.
    1. Xiao F.Z., Zhang Y., Deng Y.Q., He S., Xie H.G., Zhou X.N., Yan Y.S. The effect of temperature on the extrinsic incubation period and infection rate of dengue virus serotype 2 infection in Aedes albopictus. Arch. Virol. 2014;159(11):3053–3057. doi: 10.1007/s00705-014-2051-1.

Source: PubMed

3
Abonnieren