Efficacy and Safety of Tetrahydrocurcuminoids for the Treatment of Canker Sore and Gingivitis

Muhammed Majeed, Shaheen Majeed, Kalyanam Nagabhushanam, Muhammed Majeed, Shaheen Majeed, Kalyanam Nagabhushanam

Abstract

Background: Tetrahydrocurcuminoids (THCs) are among the major metabolites of curcuminoids with a higher bioavailability and physiological stability and exhibit a broad spectrum of therapeutic activities. The objective of this study was to evaluate the efficacy of THCs in patients suffering from canker sore and gingivitis designed as an exploratory clinical trial.

Methods: This is an open label prospective pilot clinical trial carried out at two clinical centers: Noble Hospital, Pune, Maharashtra, and Sri Venkateshwara Hospital, Bangalore, Karnataka in India. Participants were assigned to 21 days of treatment with chewable oral THCs supplement. Patients were instructed to self-administer one chewable tablet containing 100 mg of THCs twice daily for up to 21 days. This clinical trial was registered at a public Clinical Trial Registry in India (http://www.ctri.nic.in). Thirty-one canker sore and twenty-nine gingivitis patients participated in this study. Body mass index, throat numbness/relief, Visual Analog Scale (VAS) pain score, canker sore lesions, gingival appearance, inflammation and bleeding were assessed before and after treatment, at 14 and 21 days. Vital signs and laboratory parameters were assessed for safety.

Results: THCs treatment significantly reduced the reddening at the site, difficulty in chewing, swallowing, and VAS pain score in the canker sore patients. Further, both single and multiple lesions were completely healed. In gingivitis patients, gingival appearance, bleeding, and inflammation were significantly reduced. No adverse effects were observed during the study.

Conclusion: Overall, the findings of this study show that supplementation of THCs for 21 days reduced the pain and prevented the progression of the disease in patients suffering from canker sore and gingivitis without adverse side effects.

Conflict of interest statement

Sami-Sabinsa Group holds patents/trademarks covering the tetrahydrocurcuminoids. All the authors are affiliated with Sami-Sabinsa Group.

Copyright © 2020 Muhammed Majeed et al.

Figures

Figure 1
Figure 1
Structures of tetrahydrocurcuminoids (all the THCs exist as a mixture of keto and enol forms. Only the keto form is shown here). (a) THC. (b) THDMC. (c) THBDMC.
Figure 2
Figure 2
Study design flow chart on subject participation, efficacy, and safety assessment.
Figure 3
Figure 3
Comparative analysis of data on clinical signs and symptoms of canker sore patients before (day 0) and after treatment (days 14 and 21) with THCs. (a) No. of patients with throat numbness at different time points of treatment, p < 0.05 based on McNemar and Cochran's Q tests and as compared by chi-square test. (b) Median throat relief score at three points of treatment determined using Friedman ANOVA, ∗∗p < 0.001. (c) Median VAS pain score at different time points of treatment determined using Friedman ANOVA, ∗∗p < 0.001. (d) Visual evaluation.
Figure 4
Figure 4
Effect of THCs on gingivitis. (a) Line plots showing differences in Löe and Silness Plaque Indices (PI) (mean ± SD) of gingivitis patients such as appearance, bleeding, and inflammation before (day 0) and after treatment (days 14 and 21) with THCs analyzed using the Friedman ANOVA. (b) Total points (mean ± SD) before (day 0) and after treatment (days 14 and 21) with THCs analyzed using the Wilcoxon signed-rank test. ∗∗p < 0.001 for gingival (gum) appearance and bleeding; ∗∗p < 0.001 for inflammation and total points.

References

    1. Natah S. S., Konttinen Y. T., Enattah N. S., Ashammakhi N., Sharkey K. A., Häyrinen-Immonen R. Recurrent aphthous ulcers today: a review of the growing knowledge. International Journal of Oral and Maxillofacial Surgery. 2004;33(3):221–234. doi: 10.1006/ijom.2002.0446.
    1. Pihlstrom B. L., Michalowicz B. S., Johnson N. W. Periodontal diseases. The Lancet. 2005;366(9499):1809–1820. doi: 10.1016/s0140-6736(05)67728-8.
    1. Loesche W. J., Gusberti F., Mettraux G., Higgins T., Syed S. Relationship between oxygen tension and subgingival bacterial flora in untreated human periodontal pockets. Infection and Immunity. 1983;42(2):659–667. doi: 10.1128/iai.42.2.659-667.1983.
    1. Isola G. Current evidence of natural agents in oral and periodontal health. Nutrients. 2020;12(2) doi: 10.3390/nu12020585.
    1. Wu J.-C., Tsai M.-L., Lai C.-S., Wang Y.-J., Ho C.-T., Pan M.-H. Chemopreventative effects of tetrahydrocurcumin on human diseases. Food and Function. 2014;5(1):12–17. doi: 10.1039/c3fo60370a.
    1. Mahyari S., Mahyari B., Emami S. A., et al. Evaluation of the efficacy of a polyherbal mouthwash containing Zingiber officinale, Rosmarinus officinalis and Calendula officinalis extracts in patients with gingivitis: a randomized double-blind placebo-controlled trial. Complementary Therapies in Clinical Practice. 2016;22:93–98. doi: 10.1016/j.ctcp.2015.12.001.
    1. Somu C., Ravindra S., Ajith S., Ahamed M. Efficacy of a herbal extract gel in the treatment of gingivitis: a clinical study. Journal of Ayurveda and Integrative Medicine. 2012;3(2):85–90. doi: 10.4103/0975-9476.96525.
    1. Al-Maweri S. A., Alaizari N., Alharbi A. A., et al. Efficacy of curcumin for recurrent aphthous stomatitis: a systematic review. Journal of Dermatological Treatment. 2020:1–6. doi: 10.1080/09546634.2020.1819529.
    1. Manifar S., Obwaller A., Gharehgozloo A., Boorboor Shirazi Kordi H., Akhondzadeh S. Curcumin gel in the treatment of minor aphthous ulcer: a randomized, placebo-controlled trial. Journal of Medicinal Plants. 2012;1(41):40–45.
    1. Arunachalam L. T., Sudhakar U., Vasanth J., Khumukchum S., Selvam V. V. Comparison of anti-plaque and anti-gingivitis effect of curcumin and chlorhexidine mouth rinse in the treatment of gingivitis: a clinical and biochemical study. Journal of Indian Society of Periodontology. 2017;21(6):478–483. doi: 10.4103/jisp.jisp_116_17.
    1. Nagasri M., Madhulatha M., Musalaiah S. V., Kumar P. A., Krishna C. H., Kumar P. M. Efficacy of curcumin as an adjunct to scaling and root planning in chronic periodontitis patients: a clinical and microbiological study. Journal of Pharmacy and Bioallied Sciences. 2015;7(2):S554–S558. doi: 10.4103/0975-7406.163537.
    1. Raghava K. V., Sistla K. P., Narayan S. J., Yadalam U., Bose A., Mitra K. Efficacy of curcumin as an adjunct to scaling and root planing in chronic periodontitis patients: a randomized controlled clinical trial. The Journal of Contemporary Dental Practice. 2019;20(7):842–846. doi: 10.5005/jp-journals-10024-2608.
    1. Sugiyama Y., Kawakishi S., Osawa T. Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochemical Pharmacology. 1996;52(4):519–525. doi: 10.1016/0006-2952(96)00302-4.
    1. Pan M. H., Huang T. M., Lin J. K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabolism and Disposition: The Biological Fate of Chemicals. 1999;27(4):486–494.
    1. Li J., Liu Y., Wei J.-Q., et al. Isolation and identification of phase 1 metabolites of curcuminoids in rats. Planta Medica. 2012;78(12):1351–1356. doi: 10.1055/s-0032-1314990.
    1. Okada K., Wangpoengtrakul C., Tanaka T., Toyokuni S., Uchida K., Osawa T. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. The Journal of Nutrition. 2001;131(8):2090–2095. doi: 10.1093/jn/131.8.2090.
    1. Pari L., Murugan P. Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacological Research. 2004;49(5):481–486. doi: 10.1016/j.phrs.2003.11.005.
    1. Portes E., Gardrat C., Castellan A. A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids. Tetrahedron. 2007;63(37):9092–9099. doi: 10.1016/j.tet.2007.06.085.
    1. Somparn P., Phisalaphong C., Nakornchai S., Unchern S., Morales N. P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biological & Pharmaceutical Bulletin. 2007;30(1):74–78. doi: 10.1248/bpb.30.74.
    1. Hassaninasab A., Hashimoto Y., Tomita-Yokotani K., Kobayashi M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proceedings of the National Academy of Sciences. 2011;108(16):6615–6620. doi: 10.1073/pnas.1016217108.
    1. Sharma K., Sahai M. Chemical constituents of Zingiber officinale rhizome. Journal of Medicinal Plants. 2018;6(1):146–149.
    1. Matsuda H., Tewtrakul S., Morikawa T., Nakamura A., Yoshikawa M. Anti-allergic principles from Thai zedoary: structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF-α and IL-4 in RBL-2H3 cells. Bioorganic & Medicinal Chemistry. 2004;12(22):5891–5898. doi: 10.1016/j.bmc.2004.08.027.
    1. Friesen J. B., Liu Y., Chen S.-N., McAlpine J. B., Pauli G. F. Selective depletion and enrichment of constituents in “curcumin” and other Curcuma longa preparations. Journal of Natural Products. 2019;82(3):621–630. doi: 10.1021/acs.jnatprod.9b00020.
    1. Jia S., Du Z., Song C., et al. Identification and characterization of curcuminoids in turmeric using ultra-high performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. Journal of Chromatography A. 2017;1521:110–122. doi: 10.1016/j.chroma.2017.09.032.
    1. Dileep K. V., Tintu I., Sadasivan C. Molecular docking studies of curcumin analogs with phospholipase A2. Interdisciplinary Sciences: Computational Life Sciences. 2011;3(3):189–197. doi: 10.1007/s12539-011-0090-9.
    1. Majeed M., Nagabhushanam K., Narayanan N. K., et al. Reductive Metabolites of Curcuminoids. Piscataway, NJ, USA: NutriScience Publishers, LLC.; 2019.
    1. Battino M., Bompadre S., Politi A., Fioroni M., Rubini C., Bullon P. Antioxidant status (CoQ10 and vit. E levels) and immunohistochemical analysis of soft tissues in periodontal diseases. Biofactors. 2005;25(1-4):213–217. doi: 10.1002/biof.5520250126.
    1. Novaes J. T., Lillico R., Sayre C. L., et al. Disposition, metabolism and histone deacetylase and acetyltransferase inhibition activity of tetrahydrocurcumin and other curcuminoids. Pharmaceutics. 2017;9(4) doi: 10.3390/pharmaceutics9040045.
    1. Zhang Z. B., Luo D. D., Xie J. H., et al. Curcumin’s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κb pathway. Frontiers in Pharmacology. 2018;9 doi: 10.3389/fphar.2018.01181.1181
    1. Zhao F., Gong Y., Hu Y., et al. Curcumin and its major metabolites inhibit the inflammatory response induced by lipopolysaccharide: translocation of nuclear factor-κB as potential target. Molecular Medicine Reports. 2015;11(4):3087–3093. doi: 10.3892/mmr.2014.3079.
    1. Younis A. M., Ibrahim A.-R. S., Ibrahim S. M., AboulSoud K. A., Kabbash A. M. Microbial transformation of curcumin and evaluation of the biological activities of the isolated metabolites. Journal of Pharmaceutical Sciences and Research. 2016;8(10)1169
    1. Aggarwal B., Deb L., Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules. 2014;20(1):185–205. doi: 10.3390/molecules20010185.
    1. Promrug D. The Effects of Curcumin and Tetrahydrocurcumin on Gingivial Microvascular Dysfunction in Diabetic Rats. Bangkok, Thailand: Chulalongkom University; 2010.
    1. Chhaparwal Y., M Pai K., Kamath M. s., Carnelio S., Chhaparwal S. Efficacy and safety of tetrahydrocurcuminoid in the treatment of oral leukoplakia: a pilot study. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(12):194–196. doi: 10.22159/ajpcr.2018.v11i12.28107.
    1. Majeed M., Natarajan S., Pandey A., Bani S., Mundkur L. Subchronic and reproductive/developmental toxicity studies of tetrahydrocurcumin in rats. Toxicological Research. 2019;35(1):65–74. doi: 10.5487/tr.2019.35.1.065.
    1. Trivedi M. K., Gangwar M., Mondal S. C., Jana S. Protective effects of tetrahydrocurcumin (THC) on fibroblast and melanoma cell lines in vitro: it’s implication for wound healing. Journal of Food Science and Technology. 2017;54(5):1137–1145. doi: 10.1007/s13197-017-2525-8.
    1. Muglikar S., Patil K. C., Shivswami S., Hegde R. Efficacy of curcumin in the treatment of chronic gingivitis: a pilot study. Oral Health & Preventive Dentistry. 2013;11(1):81–86. doi: 10.3290/j.ohpd.a29379.
    1. Stoyell K. A., Mappus J. L., Gandhi M. A. Clinical efficacy of turmeric use in gingivitis: a comprehensive review. Complementary Therapies in Clinical Practice. 2016;25:13–17. doi: 10.1016/j.ctcp.2016.08.004.
    1. Waghmare P. F., Chaudhari A. U., Karhadkar V. M., Jamkhande A. S. Comparative evaluation of turmeric and chlorhexidine gluconate mouthwash in prevention of plaque formation and gingivitis: a clinical and microbiological study. The Journal of Contemporary Dental Practice. 2011;12(4):221–224. doi: 10.5005/jp-journals-10024-1038.
    1. Naito M., Wu X., Nomura H., et al. The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. Journal of Atherosclerosis and Thrombosis. 2002;9(5):243–250. doi: 10.5551/jat.9.243.
    1. Morales N. P., Sirijaroonwong S., Yamanont P., Phisalaphong C. Electron paramagnetic resonance study of the free radical scavenging capacity of curcumin and its demethoxy and hydrogenated derivatives. Biological & Pharmaceutical Bulletin. 2015;38(10):1478–1483. doi: 10.1248/bpb.b15-00209.
    1. San Miguel S. M., Opperman L. A., Allen E. P., Zielinski J., Svoboda K. K. H. Bioactive antioxidant mixtures promote proliferation and migration on human oral fibroblasts. Archives of Oral Biology. 2011;56(8):812–822. doi: 10.1016/j.archoralbio.2011.01.001.
    1. Pan M.-H., Lin-Shiau S.-Y., Lin J.-K. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NFκB activation in macrophages. Biochemical Pharmacology. 2000;60(11):1665–1676. doi: 10.1016/s0006-2952(00)00489-5.
    1. Singh R. P., Jain D. A. Antimicrobial activity of hydrogenated derivatives of curcumin. Journal of Pharmacy Research. 2012;5(7):3650–3653.
    1. Vijaya Saradhi U. V. R., Ling Y., Wang J., et al. A liquid chromatography-tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. Journal of Chromatography B. 2010;878(30):3045–3051. doi: 10.1016/j.jchromb.2010.08.039.

Source: PubMed

3
Abonnieren