Kynurenine, Tetrahydrobiopterin, and Cytokine Inflammatory Biomarkers in Individuals Affected by Diabetic Neuropathic Pain

Ananda Staats Pires, Benjamin Heng, Vanessa X Tan, Alexandra Latini, Marc A Russo, Danielle M Santarelli, Dominic Bailey, Katie Wynne, Jayden A O'Brien, Gilles J Guillemin, Paul J Austin, Ananda Staats Pires, Benjamin Heng, Vanessa X Tan, Alexandra Latini, Marc A Russo, Danielle M Santarelli, Dominic Bailey, Katie Wynne, Jayden A O'Brien, Gilles J Guillemin, Paul J Austin

Abstract

Neuropathic pain is a common complication of diabetes with high morbidity and poor treatment outcomes. Accumulating evidence suggests the immune system is involved in the development of diabetic neuropathy, whilst neuro-immune interactions involving the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways have been linked to neuropathic pain pre-clinically and in several chronic pain conditions. Here, using a multiplex assay, we quantified serum levels of 14 cytokines in 21 participants with type 1 diabetes mellitus, 13 of which were classified as having neuropathic pain. In addition, using high performance liquid chromatography and gas chromatography-mass spectrometry, all major KYN and BH4 pathway metabolites were quantified in serum from the same cohort. Our results show increases in GM-CSF and IL-8, suggesting immune cell involvement. We demonstrated increases in two inflammatory biomarkers: neopterin and the KYN/TRP ratio, a marker of indoleamine 2,3-dioxygenase activity. Moreover, the KYN/TRP ratio positively correlated with pain intensity. Total kynurenine aminotransferase activity was also higher in the diabetic neuropathic pain group, indicating there may be increased production of the KYN metabolite, xanthurenic acid. Overall, this study supports the idea that inflammatory activation of the KYN and BH4 pathways occurs due to elevated inflammatory cytokines, which might be involved in the pathogenesis of neuropathic pain in type 1 diabetes mellitus. Further studies should be carried out to investigate the role of KYN and BH4 pathways, which could strengthen the case for therapeutically targeting them in neuropathic pain conditions.

Keywords: kynurenine; neuropathic pain; pro-inflammatory cytokines; tetrahydrobiopterin; type 1 diabetes.

Copyright © 2020 Staats Pires, Heng, Tan, Latini, Russo, Santarelli, Bailey, Wynne, O’Brien, Guillemin and Austin.

Figures

FIGURE 1
FIGURE 1
A schematic diagram of the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways. Both KYN and BH4 pathways are activated by inflammatory cytokines such as IL-1β, Il-6, IFN-γ, TNF-α, and the immune activator LPS. LPS, lipopolysaccharide; GTP, Guanosine-5’-triphosphate; GTPCH, GTP cyclohydrolase I; PTPS, 6-pyruvoyl-tetrahydropterin synthase; IDO, Indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; KATs, Kynurenine aminotransferases; KYNA, Kynurenine acid; XA, Xanthurenic acid; KYNU, Kynureninase; AA, Anthranilic acid; KMO, Kynurenine 3-monooxygenase; 3-HK, 3-Hydroxykynurenine; 3-HAA, 3-Hydroxyanthranilic acid; 3-HAO, 3-hydroxyanthranilate 3,4-dioxygenase; QUIN, Quinolinic acid.
FIGURE 2
FIGURE 2
Cytokine levels in the serum of diabetic neuropathic pain and diabetic control groups. (A) GM-CSF and (B) IL-8 in serum of DNP participants and diabetic controls. *P < 0.05, **P < 0.01, unpaired two-tailed Mann–Whitney U-test. Circles represent male participants; triangles represent female participants.
FIGURE 3
FIGURE 3
Levels of two major inflammatory biomarkers in the serum of diabetic neuropathic pain and diabetes control groups. (A) KYN/TRP ratio and (B) NEO in serum of DNP participants and diabetic controls. *P < 0.05, unpaired two-tailed Student’s T-test. (C) The relationship between pain intensity score and the KYN/TRP ratio in DNP and DC groups. *P < 0.05 & R2 linear regression analysis. Circles represent male participants; triangles represent female participants. TRP, Tryptophan; KYN, Kynurenine; NEO, neopterin; VAS, Visual analog scale.
FIGURE 4
FIGURE 4
The relationships between TNF-α and IL-1β, and metabolites of the KYN and BH4 pathways in serum of diabetic neuropathic pain and diabetic control groups. (A) TNF-α and KYN expression correlate in the DNP group. (B) TNF-α and PIC expression correlate in the DNP group. (C) IL-1β and BH4 levels correlate in the DNP group. **P < 0.01, P < 0.001 & R2 from linear regression analysis. Circles represent male participants; triangles represent female participants.

References

    1. Abbott C. A., Malik R. A., van Ross E. R., Kulkarni J., Boulton A. J. (2011). Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 34 2220–2224. 10.2337/dc11-1108
    1. Alexander G. M., Reichenberger E., Peterlin B. L., Perreault M. J., Grothusen J. R., Schwartzman R. J. (2013). Plasma amino acids changes in complex regional pain syndrome. Pain Res. Treat. 2013:742407. 10.1155/2013/742407
    1. Austin P., Moalem-Taylor G. (2010). The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 229 26–50. 10.1016/j.jneuroim.2010.08.013
    1. Austin P. J., Fiore N. T. (2019). Supraspinal neuroimmune crosstalk in chronic pain states. Curr. Opin. Physiol. 11 7–15. 10.1016/j.cophys.2019.03.008
    1. Badawy A. A. (2017). Tryptophan availability for kynurenine pathway metabolism across the life span: control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 112(Pt B), 248–263. 10.1016/j.neuropharm.2015.11.015
    1. Badawy A. A., Dougherty D. M. (2016). Assessment of the human kynurenine pathway: comparisons and clinical implications of ethnic and gender differences in plasma tryptophan, kynurenine metabolites, and enzyme expressions at baseline and after acute tryptophan loading and depletion. Int. J. Tryptophan. Res. 9 31–49. 10.4137/IJTR.S38189
    1. Badawy A. A. B. (2010). Plasma free tryptophan revisited: what you need to know and do before measuring it. J. Psychopharmacol. 24 809–815. 10.1177/0269881108098965
    1. Barry A., O’Halloran K. D., McKenna J. P., McCreary C., Downer E. J. (2018). Plasma IL-8 signature correlates with pain and depressive symptomatology in patients with burning mouth syndrome: results from a pilot study. J. Oral Pathol. Med. 47 158–165. 10.1111/jop.12666
    1. Beninger R. J., Colton A. M., Ingles J. L., Jhamandas K., Boegman R. J. (1994). Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry. Neuroscience 61 603–612. 10.1016/0306-4522(94)90438-3
    1. Bouhassira D., Attal N., Alchaar H., Boureau F., Brochet B., Bruxelle J., et al. (2005). Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 114 29–36. 10.1016/j.pain.2004.12.010
    1. Cockhill J., Jhamandas K., Boegman R. J., Beninger R. J. (1992). Action of picolinic acid and structurally related pyridine carboxylic acids on quinolinic acid-induced cortical cholinergic damage. Brain Res. 599 57–63. 10.1016/0006-8993(92)90852-z
    1. Connor T. J., Starr N., O’Sullivan J. B., Harkin A. (2008). Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci. Lett. 441 29–34. 10.1016/j.neulet.2008.06.007
    1. Cronin S. J. F., Seehus C., Weidinger A., Talbot S., Reissig S., Seifert M., et al. (2018). The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 563 564–568. 10.1038/s41586-018-0701-2
    1. De Boer R. J., Mohri H., Ho D. D., Perelson A. S. (2003). Turnover rates of B Cells, T Cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques. J. Immunol. 170 2479–2487. 10.4049/jimmunol.170.5.2479
    1. de Paula Martins R., Ghisoni K., Lim C. K., Aguiar A. S., Jr., Guillemin G. J., Latini A., et al. (2018). Neopterin preconditioning prevents inflammasome activation in mammalian astrocytes. Free Radic. Biol. Med. 115 371–382. 10.1016/j.freeradbiomed.2017.11.022
    1. Dias I. C. D., Carabelli B., Ishii D. K., de Morais H., de Carvalho M. C., de Souza L. E. R., et al. (2016). Indoleamine-2,3-Dioxygenase/Kynurenine Pathway as a potential pharmacological target to treat depression associated with diabetes. Mo. Neurobiol. 53 6997–7009. 10.1007/s12035-015-9617-0
    1. Dworkin R. H., Turk D. C., Revicki D. A., Harding G., Coyne K. S., Peirce-Sandner S., et al. (2009). Development and initial validation of an expanded and revised version of the Short-form McGill Pain Questionnaire (SF-MPQ-2). Pain 144 35–42. 10.1016/j.pain.2009.02.007
    1. Feldman E. L., Callaghan B. C., Pop-Busui R., Zochodne D. W., Wright D. E., Bennett D. L., et al. (2019). Diabetic neuropathy. Nat. Rev. Dis. Primers 5:41. 10.1038/s41572-019-0092-1
    1. Fujita M., da Luz Scheffer D., Lenfers Turnes B., Cronin S. J. F., Latremoliere A., Costigan M., et al. (2019). Sepiapterin reductase inhibition selectively reduces inflammatory joint pain and increases urinary sepiapterin. Arthritis Rheumatol. 72 57–66. 10.1002/art.41060
    1. Ge S., Xie J., Zheng L., Yang L., Zhu H., Cheng X., et al. (2016). Associations of serum anti-ganglioside antibodies and inflammatory markers in diabetic peripheral neuropathy. Diabetes Res. Clin. Pract. 115 68–75. 10.1016/j.diabres.2016.02.005
    1. Ghisoni K., Martins R. D. P., Barbeito L., Latini A. (2015). Neopterin as a potential cytoprotective brain molecule. J. Psychiatr Res. 71 134–139. 10.1016/j.jpsychires.2015.10.003
    1. Grace P. M., Hutchinson M. R., Maier S. F., Watkins L. R. (2014). Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14 217–231. 10.1038/nri3621
    1. Guillemin G. J. (2012). Quinolinic acid, the inescapable neurotoxin. Febs J. 279 1356–1365. 10.1111/j.1742-4658.2012.08485.x
    1. Guillemin G. J., Cullen K. M., Lim C. K., Smythe G. A., Garner B., Kapoor V., et al. (2007). Characterization of the kynurenine pathway in human neurons. J. Neurosci. 27 12884–12892. 10.1523/JNEUROSCI.4101-07.2007
    1. Gunn J., Hill M. M., Cotten B. M., Deer T. R. (2020). An analysis of biomarkers in patients with chronic pain. Pain Physician 23 E41–E49.
    1. Hamilton J. A. (2008). Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8 533–544. 10.1038/nri2356
    1. Holzer P. (1998). Neurogenic vasodilatation and plasma leakage in the skin. Gen Pharmacol. 30 5–11. 10.1016/s0306-3623(97)00078-5
    1. Huber C., Fuchs D., Hausen A., Margreiter R., Reibnegger G., Spielberger M., et al. (1983). Pteridines as a new marker to detect human T-Cells activated by allogeneic or modified self major histocompatibility complex (Mhc) determinants. J. Immunol. 130 1047–1050.
    1. Hussain G., Rizvi S. A. A., Singhal S., Zubair M., Ahmad J. (2013). Serum levels of TNF-α in peripheral neuropathy patients and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 7 238–242. 10.1016/j.dsx.2013.02.005
    1. Hussain G., Rizvi S. A. A., Singhal S., Zubair M., Ahmad J. (2016). Serum levels of TGF-β1 in patients of diabetic peripheral neuropathy and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 10(1 Suppl. 1), S135–S139. 10.1016/j.dsx.2015.10.011
    1. IASP, (2017). IASP Terminology. Washington, DC: IASP.
    1. Janahi N. M., Santos D., Blyth C., Bakhiet M., Ellis M. (2015). Diabetic peripheral neuropathy, is it an autoimmune disease? Immunol. Lett. 168 73–79. 10.1016/j.imlet.2015.09.009
    1. Jensen M. P., Chodroff M. J., Dworkin R. H. (2007). The impact of neuropathic pain on health-related quality of life: review and implications. Neurology 68 1178–1182. 10.1212/01.wnl.0000259085.61898.9e
    1. Jose V. M., Bhansali A., Hota D., Pandhi P. (2007). Randomized double-blind study comparing the efficacy and safety of lamotrigine and amitriptyline in painful diabetic neuropathy. Diabet Med. 24 377–383. 10.1111/j.1464-5491.2007.02093.x
    1. Kim H., Chen L., Lim G., Sung B., Wang S., McCabe M. F., et al. (2012). Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J. Clin. Investig. 122 2940–2954. 10.1172/JCI61884
    1. Langjahr M., Schubert A.-L., Sommer C., Üçeyler N. (2018). Increased pro-inflammatory cytokine gene expression in peripheral blood mononuclear cells of patients with polyneuropathies. J. Neurol. 265 618–627. 10.1007/s00415-018-8748-4
    1. Latremoliere A., Latini A., Andrews N., Cronin S. J., Fujita M., Gorska K., et al. (2015). Reduction of neuropathic and inflammatory pain through inhibition of the tetrahydrobiopterin pathway. Neuron 86 1393–1406. 10.1016/j.neuron.2015.05.033
    1. Laumet G., Zhou W., Dantzer R., Edralin J. D., Huo X., Budac D. P., et al. (2017). Upregulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain. Brain Behav. Immun. 66 94–102. 10.1016/j.bbi.2017.07.008
    1. Lovibond P. F., Lovibond S. H. (1995). The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther 33 335–343. 10.1016/0005-7967(94)00075-u
    1. Luchting B., Rachinger-Adam B., Heyn J., Hinske L. C., Kreth S., Azad S. C. (2015). Anti-inflammatory T-cell shift in neuropathic pain. J. Neuroinflammation 12:12. 10.1186/s12974-014-0225-0
    1. Mapplebeck J. C., Beggs S., Salter M. W. (2016). Sex differences in pain: a tale of two immune cells. Pain 157(Suppl. 1), S2–S6. 10.1097/j.pain.0000000000000389
    1. Munn D. H., Zhou M., Attwood J. T., Bondarev I., Conway S. J., Marshall B., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281 1191–1193. 10.1126/science.281.5380.1191
    1. Neale S. A., Copeland C. S., Uebele V. N., Thomson F. J., Salt T. E. (2013). Modulation of hippocampal synaptic transmission by the kynurenine pathway member xanthurenic acid and other VGLUT inhibitors. Neuropsychopharmacology 38 1060–1067. 10.1038/npp.2013.4
    1. Nicholas M. K. (2007). The pain self-efficacy questionnaire: taking pain into account. Eur. J. Pain 11 153–163. 10.1016/j.ejpain.2005.12.008
    1. Nicol L. S. C., Thornton P., Hatcher J. P., Glover C. P., Webster C. I., Burrell M., et al. (2018). Central inhibition of granulocyte-macrophage colony-stimulating factor is analgesic in experimental neuropathic pain. Pain 159 550–559. 10.1097/j.pain.0000000000001130
    1. Pemberton L. A., Kerr S. J., Smythe G., Brew B. J. (1997). Quinolinic acid production by macrophages stimulated with IFN-gamma. TNF-αlpha, and IFN-alpha. J. Interferon Cytokine Res. 17 589–595. 10.1089/jir.1997.17.589
    1. Robinson C. M., Shirey K. A., Carlin J. M. (2003). Synergistic transcriptional activation of indoleamine dioxygenase by IFN-gamma and tumor necrosis factor-alpha. J. Interferon Cytokine Res. 23 413–421. 10.1089/107999003322277829
    1. Roelofs J., van Breukelen G., Sluiter J., Frings-Dresen M. H., Goossens M., Thibault P., et al. (2011). Norming of the tampa scale for kinesiophobia across pain diagnoses and various countries. Pain 152 1090–1095. 10.1016/j.pain.2011.01.028
    1. Rojewska E., Ciapala K., Piotrowska A., Makuch W., Mika J. (2018). Pharmacological Inhibition of Indoleamine 2,3-Dioxygenase-2 and Kynurenine 3-Monooxygenase, enzymes of the kynurenine pathway, significantly diminishes neuropathic pain in a rat model. Front. Pharmacol. 9:724. 10.3389/fphar.2018.00724
    1. Rojewska E., Piotrowska A., Makuch W., Przewlocka B., Mika J. (2016). Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model. Neuropharmacology 102 80–91. 10.1016/j.neuropharm.2015.10.040
    1. Russo M. A., Fiore N. T., van Vreden C., Bailey D., Santarelli D. M., McGuire H. M., et al. (2019). Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome. J. Neuroinflammation 16:63. 10.1186/s12974-019-1449-9
    1. Russo M. A., Georgius P., Staats Pires A., Heng B., Allwright M., Guennewig B., et al. (2020). Novel immune biomarkers in complex regional pain syndrome. J. Neuroimmunol. 347:577330. 10.1016/j.jneuroim.2020.577330
    1. Schrocksnadel K., Wirleitner B., Winkler C., Fuchs D. (2006). Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta 364 82–90. 10.1016/j.cca.2005.06.013
    1. Schweizerhof M., Stösser S., Kurejova M., Njoo C., Gangadharan V., Agarwal N., et al. (2009). Hematopoietic colony–stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat. Med. 15 802–807. 10.1038/nm.1976
    1. Shi W., Meininger C. J., Haynes T. E., Hatakeyama K., Wu G. (2004). Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem. Biophys. 41 415–434. 10.1385/CBB:41:3:415
    1. Staats Pires A., Tan V. X., Heng B., Guillemin G. J., Latini A. (2020). Kynurenine and tetrahydrobiopterin pathways crosstalk in pain hypersensitivity. Front. Neurosci. 14:620. 10.3389/fnins.2020.00620
    1. Sullivan M. J. L., Bishop S. R., Pivik J. (1995). The pain catastrophizing scale: development and validation. Psychol. Assess. 7 524–532. 10.1037/1040-3590.7.4.524
    1. Talbot S., Foster S. L., Woolf C. J. (2016). Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. 34 421–447. 10.1146/annurev-immunol-041015-055340
    1. Tavakoli M., Malik R. A. (2008). Management of painful diabetic neuropathy. Expert Opin. Pharmacother. 9 2969–2978. 10.1517/14656560802498149
    1. Tegeder I., Costigan M., Griffin R. S., Abele A., Belfer I., Schmidt H., et al. (2006). GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12 1269–1277. 10.1038/nm1490
    1. Tewari D., Cook A. D., Lee M.-C., Christensen A. D., Croxford A., Becher B., et al. (2020). Granulocyte-macrophage colony stimulating factor as an indirect mediator of nociceptor activation and pain. J. Neurosci. 40 2189–2199. 10.1523/JNEUROSCI.2268-19.2020
    1. Uceyler N., Rogausch J. P., Toyka K. V., Sommer C. (2007). Differential expression of cytokines in painful and painless neuropathies. Neurology 69 42–49. 10.1212/01.wnl.0000265062.92340.a5
    1. van Hecke O., Austin S. K., Khan R. A., Smith B. H., Torrance N. (2014). Neuropathic pain in the general population: a systematic review of epidemiological studies (vol 155, pg 654, 2014). Pain 155 1907–1907. 10.1016/j.pain.2014.06.006
    1. Walker A. K., Kavelaars A., Heijnen C. J., Dantzer R. (2014). Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 66 80–101. 10.1124/pr.113.008144
    1. Wang S. X. Y., Ho E. L., Grill M., Lee E., Peterson J., Robertson K., et al. (2014). Peripheral neuropathy in primary HIV infection associates with systemic and central nervous system immune activation. J. Acquir. Immune Defic. Syndr. 66 303–310. 10.1097/QAI.0000000000000167
    1. Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger G., Yim J. J., et al. (1990). Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-gamma, and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J. Biol. Chem. 265 3189–3192.
    1. Werner E. R., Werner-Felmayer G., Wachter H. (1993). Tetrahydrobiopterin and cytokines. Proc. Soc. Exp. Biol. Med. 203 1–12. 10.3181/00379727-203-43566A
    1. Zhou W., Dantzer R., Budac D. P., Walker A. K., Mao-Ying Q. L., Lee A. W., et al. (2015). Peripheral indoleamine 2,3-dioxygenase 1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice. Brain Behav. Immun. 46 147–153. 10.1016/j.bbi.2015.01.013
    1. Zhu T., Meng Q., Ji J., Lou X., Zhang L. (2015). Toll-like receptor 4 and tumor necrosis factor-alpha as diagnostic biomarkers for diabetic peripheral neuropathy. Neurosci. Lett. 585 28–32. 10.1016/j.neulet.2014.11.020

Source: PubMed

3
Abonnieren