Perspective on Vision Science-Informed Interventions for Central Vision Loss

Marcello Maniglia, Kristina M Visscher, Aaron R Seitz, Marcello Maniglia, Kristina M Visscher, Aaron R Seitz

Abstract

Pathologies affecting central vision, and macular degeneration (MD) in particular, represent a growing health concern worldwide, and the leading cause of blindness in the Western World. To cope with the loss of central vision, MD patients often develop compensatory strategies, such as the adoption of a Preferred Retinal Locus (PRL), which they use as a substitute fovea. However, visual acuity and fixation stability in the visual periphery are poorer, leaving many MD patients struggling with tasks such as reading and recognizing faces. Current non-invasive rehabilitative interventions are usually of two types: oculomotor, aiming at training eye movements or teaching patients to use or develop a PRL, or perceptual, with the goal of improving visual abilities in the PRL. These training protocols are usually tested over a series of outcome assessments mainly measuring low-level visual abilities (visual acuity, contrast sensitivity) and reading. However, extant approaches lead to mixed success, and in general have exhibited large individual differences. Recent breakthroughs in vision science have shown that loss of central vision affects not only low-level visual abilities and oculomotor mechanisms, but also higher-level attentional and cognitive processes. We suggest that effective interventions for rehabilitation after central vision loss should then not only integrate low-level vision and oculomotor training, but also take into account higher level attentional and cognitive mechanisms.

Keywords: clinical intervention strategy perspective; macular degeneration; neural plasticity; oculomotor abilities; perceptual learning; visual rehabilitation.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Maniglia, Visscher and Seitz.

Figures

FIGURE 1
FIGURE 1
(A) Typical representation of the visual field of a patient with central vision loss. In reality, patients with central vision loss are rarely aware of the location and extent of their scotoma, and, crucially, said scotoma does not present clear-cut borders as it is the case of the artificial scotoma, which is shown in panel (B). A typical compensatory strategy in patients with central vision loss is the development of a peripheral retinal locus, or PRL, an eccentric fixation region close to the border of the scotoma, that patients use to fixate and solve demanding visual tasks, i.e., face recognition. Panel (C) shows where the scotoma might be placed to allow the face in the image to fall outside the scotoma and on the PRL. Panel (D) shows placement of a simulated scotoma allowing the face to be visible. Note once more that the hard edges of the simulated scotoma are different from the true scotoma, and may contribute to speeded development of a PRL with this paradigm (Walsh and Liu, 2014).
FIGURE 2
FIGURE 2
Multidimensional approach to low vision rehabilitation in MD. Figure illustrates how each of visual perception, oculomotor control and cognitive control are interconnected dimensions of vision that contribute to effective vision.
FIGURE 3
FIGURE 3
Coordinated attentional training (CAT) display. The target, a Gabor patch tilted left or right, appears in a random location on screen, accompanied by a visual (left) and an acoustic (right) cue. The visual cue, a circle surrounding the target, is either bright (100% luminance) or dim (60% luminance). The auditory cue is a simple tone whose pitch is mapped to the y axis of the target (lower for the bottom of the screen, higher for the top) and whose left-right panning target (based upon inter-aural time/level differences) depends on the target location on the x axis.
FIGURE 4
FIGURE 4
Preliminary results from our perceptual learning study comparing a standard perceptual learning (SPL) with a coordinated attentional training (CAT). In the first two rows, left side shows data from MD participants (A,C for visual acuity and MNRread respectively), while right side shows data from healthy participants trained with gaze-contingent, simulated scotoma (B,D for visual acuity and MNRread respectively). The last row shows additional assessment tasks only collected in MD participants (motion direction discrimination and Trail Making Test, E,F respectively). In SPL training, the Gabor target was always presented in the center of the screen and accompanied by a neutral acoustic cue. In CAT the target could appear anywhere on screen, thus involving visual search and gaze re-orienting. The target presentation was accompanied by a visual cue (a white circle around the target) and an auditory cue whose pitch and interaural difference were matched to the target location on screen. In the Trail Making Test, participants are presented with a piece of paper with circles containing numbers in random order and asked to use a pencil to connect them in ascending order as quickly as possible. The dependent measure of this test is the completion time expressed in seconds.

References

    1. Aguilar C., Castet E. (2011). Gaze-contingent simulation of retinopathy: some potential pitfalls and remedies. Vision Res. 51 997–1012. 10.1016/j.visres.2011.02.010
    1. Ahissar M., Hochstein S. (1993). Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. U.S.A. 90 5718–5722. 10.1073/pnas.90.12.5718
    1. Altpeter E., Mackeben M., Trauzettel-Klosinski S. (2000). The importance of sustained attention for patients with maculopathies. Vision Res. 40 1539–1547. 10.1016/S0042-6989(00)00059-6
    1. Ammar M. J., Hsu J., Chiang A., Ho A. C., Regillo C. D. (2020). Age-related macular degeneration therapy: a review. Curr. Opin. Ophthalmol. 31 215–221. 10.1097/ICU.0000000000000657
    1. Astle A. T., Blighe A. J., Webb B. S., McGraw P. V. (2015). The effect of normal aging and age-related macular degeneration on perceptual learning. J. Vis. 15:16. 10.1167/15.10.16
    1. Bailey I. L. (1987). “Prescribing magnification: strategies for improving accuracy and consistency,” in Low Vision, ed. Woo G. C. (New York, NY: Springer New York; ), 190–208. 10.1007/978-1-4612-4780-7_16
    1. Baker C. I., Peli E., Knouf N., Kanwisher N. G. (2005). Reorganization of visual processing in macular degeneration. J. Neurosci. 25 614–618. 10.1523/JNEUROSCI.3476-04.2005
    1. Barraza-Bernal M. J., Ivanov I. V., Nill S., Rifai K., Trauzettel-Klosinski S., Wahl S. (2017). Can positions in the visual field with high attentional capabilities be good candidates for a new preferred retinal locus? Vision Res. 140 1–12. 10.1016/j.visres.2017.07.009
    1. Barraza-Bernal M. J., Rifai K., Wahl S. (2017a). A preferred retinal location of fixation can be induced when systematic stimulus relocations are applied. J. Vis. 17 1–13. 10.1167/17.2.11
    1. Barraza-Bernal M. J., Rifai K., Wahl S. (2017b). Transfer of an induced preferred retinal locus of fixation to everyday life visual tasks. J. Vis. 17:2. 10.1167/17.14.2
    1. Baseler H. A, Gouws A., Haak K. V., Racey C., Crossland M. D., Tufail A., et al. (2011). Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 14 649–655. 10.1038/nn.2793
    1. Bays B. C., Visscher K. M., Le Dantec C. C., Seitz A. R. (2015). Alpha-band EEG activity in perceptual learning. J. Vis. 15:7. 10.1167/15.10.7
    1. Bernard J. B., Chung S. T. L. (2016). The role of external features in face recognition with central vision loss. Optom. Vis. Sci. 93 510–520. 10.1097/OPX.0000000000000819
    1. Bertera J. H. (1988). The effect of simulated scotomas on visual search in normal subjects. Invest. Ophthalmol. Vis. Sci. 29 470–475.
    1. Betts L. R., Sekuler A. B., Bennett P. J. (2007). The effects of aging on orientation discrimination. Vision Res. 47 1769–1780. 10.1016/j.visres.2007.02.016
    1. Bowers A., Peli E., Elgin J., McGwin G., Owsley C. (2005). On-road driving with moderate visual field loss. Optom. Vis. Sci. 82 657–667. 10.1097/01.opx.0000175558.33268.b5
    1. Bullimore M. A., Bailey I. L. (1995). Reading and eye movements in age-related maculopathy. Optom. Vis. Sci. 72 125–138. 10.1097/00006324-199502000-00011
    1. Byers A., Serences J. T. (2012). Exploring the relationship between perceptual learning and top-down attentional control. Vision Res. 74 30–39. 10.1016/j.visres.2012.07.008
    1. Camilleri R., Pavan A., Ghin F., Battaglini L., Campana G. (2014). Improvement of uncorrected visual acuity (UCVA) and contrast sensitivity (UCCS) with perceptual learning and transcranial random noise stimulation (tRNS) in individuals with mild myopia. Front. Psychol. 5:1234. 10.3389/fpsyg.2014.01234
    1. Carrasco M. (2011). Visual attention: the past 25 years. Vision Res. 51 1484–1525. 10.1016/j.visres.2011.04.012
    1. Castaldi E., Cicchini G. M., Cinelli L., Biagi L., Rizzo S., Morrone M. C. (2016). Visual BOLD response in late blind subjects with argus ii retinal prosthesis. PLoS Biol. 14:e1002569. 10.1371/journal.pbio.1002569
    1. Chapanis A. (1950). Relationships between age, visual acuity and color vision. Hum. Biol. 22 1–33.
    1. Chen N., Shin K., Millin R., Song Y., Kwon M. Y., Tjan B. S. (2019). Cortical reorganization of peripheral vision induced by simulated central vision loss. J. Neurosci. 39 3529–3536. 10.1523/JNEUROSCI.2126-18.2019
    1. Chen Z., Treisman A. (2008). Distractor inhibition is more effective at a central than at a peripheral location. Percept. Psychophys. 70 1081–1091. 10.3758/PP.70.6.1081
    1. Cheung S.-H., Legge G. E. (2005). Functional and cortical adaptations to central vision loss. Vis. Neurosci. 22 187–201. 10.1017/S0952523805222071
    1. Chung S. T. L. (2011). Improving reading speed for people with central vision loss through perceptual learning. Invest. Ophthalmol. Vis. Sci. 52 1164–1170. 10.1167/iovs.10-6034
    1. Chung S. T. L. (2013a). Cortical reorganization after long-term adaptation to retinal lesions in humans. J. Neurosci. 33 18080–18086. 10.1523/JNEUROSCI.2764-13.2013
    1. Chung S. T. L. (2013b). The glenn a. fry award lecture 2012: plasticity of the visual system following central vision loss. Optom. Vis. Sci. 90 520–529. 10.1097/OPX.0b013e318294c2da
    1. Chung S. T., Johnston A. W. (1989). Practical options for magnification and field of view of stand magnifiers. Clin. Exp. Optom. 72 140–147. 10.1111/j.1444-0938.1989.tb03074.x
    1. Coco-Martin M. B., Cuadrado-Asensio R., Lopez-Miguel A., Mayo-Iscar A., Maldonado M. J., Pastor J. C. (2013). Design and evaluation of a customized reading rehabilitation program for patients with age-related macular degeneration. Ophthalmology 120 151–159. 10.1016/j.ophtha.2012.07.035
    1. Contemori G., Trotter Y., Cottereau B. R., Maniglia M. (2019). tRNS boosts perceptual learning in peripheral vision. Neuropsychologia 125 129–136. 10.1016/j.neuropsychologia.2019.02.001
    1. Costela F. M., Reeves S. M., Woods R. L. (2020). Orientation of the preferred retinal locus (PRL) is maintained following changes in simulated scotoma size. J. Vis. 20:25. 10.1167/JOV.20.7.25
    1. Crossland M. D., Crabb D. P., Rubin G. S. (2011). Task-specific fixation behavior in macular disease. Invest. Ophthalmol. Vis. Sci. 52 411–416. 10.1167/iovs.10-5473
    1. Crossland M. D., Culham L. E., Kabanarou S. A., Rubin G. S. (2005). Preferred retinal locus development in patients with macular disease. Ophthalmology 112 1579–1585. 10.1016/j.ophtha.2005.03.027
    1. Culham L. E., Fitzke F. W., Timberlake G. T., Marshall J. (1993). Assessment of fixation stability in normal subjects and patients using a scanning laser ophthalmoscope. Clin. Vis. Sci. 8 551–561.
    1. Daibert-Nido M., Patino B., Markowitz M., Markowitz S. N. (2019). Rehabilitation with biofeedback training in age-related macular degeneration for improving distance vision. Can. J. Ophthalmol. 54 328–334. 10.1016/j.jcjo.2018.10.016
    1. de Jong P. T. (2006). Age-related macular degeneration. N. Eng. J. Med. 355 1474–1485.
    1. Derefeldt G., Lennerstrand G., Lundh B. (1979). Age variations in normal human contrast sensitivity. Acta Ophthalmol. 57 679–690. 10.1111/j.1755-3768.1979.tb00517.x
    1. Déruaz A., Whatham A. R., Mermoud C., Safran A. B. (2002). Reading with multiple preferred retinal loci: implications for training a more efficient reading strategy. Vis. Res. 42 2947–2957. 10.1016/S0042-6989(02)00354-1
    1. Dilks D. D., Baker C. I., Peli E., Kanwisher N. (2009). Reorganization of visual processing in macular degeneration is not specific to the “preferred retinal locus”. J. Neurosci. 29 2768–2773. 10.1523/JNEUROSCI.5258-08.2009
    1. Dilks D. D., Julian J. B., Peli E., Kanwisher N. (2014). Reorganization of visual processing in age-related macular degeneration depends on foveal loss. Optom. Vis. Sci. 91 e199–e206. 10.1097/OPX.0000000000000325
    1. Dosenbach N. U. F., Fair D. A., Cohen A. L., Schlaggar B. L., Petersen S. E. (2008). A dual-networks architecture of top-down control. Trends Cogn. Sci. 12 99–105. 10.1016/j.tics.2008.01.001
    1. Duret F., Issenhuth M., Safran A. B. (1999). Combined use of several preferred retinal loci in patients with macular disorders when reading single words. Vision Res. 39 873–879. 10.1016/S0042-6989(98)00179-5
    1. Estudillo J. A. R., Higuera M. I. L., Juárez S. R., Vera M., de L. O., Santana Y. P., et al. (2017). Visual rehabilitation via microperimetry in patients with geographic atrophy: a pilot study. Int. J. Retina Vitreous 3:21. 10.1186/s40942-017-0071-1
    1. Ferris F. L., 3rd, Fine S. L., Hyman L. (1984). Age-related macular degeneration and blindness due to neovascular maculopathy. Arch. Ophthalmol. 102 1640–1642.
    1. Fine E. M., Rubin G. S. (1999). Reading with simulated scotomas: attending to the right is better than attending to the left. Vision Res. 39 1039–1048. 10.1016/S0042-6989(98)00208-9
    1. Fletcher D. C., Schuchard R. A., Renninger L. W. (2012). Patient awareness of binocular central scotoma in age-related macular degeneration. Optom. Vis. Sci. 89 1395–1398. 10.1097/OPX.0b013e318264cc77
    1. Fletcher D. C., Schuchard R. A. (1997). Preferred retinal loci relationship to macular scotomas in a low-vision population. Ophthalmology 104 632–638. 10.1016/S0161-6420(97)30260-7
    1. Frankó E., Seitz A. R., Vogels R. (2010). Dissociable neural effects of long-term stimulus-reward pairing in macaque visual cortex. J. Cogn. Neurosci. 22 1425–1439. 10.1162/jocn.2009.21288
    1. Frennesson C., Jakobsson P., Nilsson U. L. (1995). A computer and video display based system for training eccentric viewing in macular degeneration with an absolute central scotoma. Doc. Ophthalmol. 91 9–16. 10.1007/BF01204619
    1. Gaffney A. J., Margrain T. H., Bunce C. V., Binns A. M. (2014). How effective is eccentric viewing training? A systematic literature review. Ophthalmic Physiol. Opt. 34 427–437. 10.1111/opo.12132
    1. Griffis J. C., Eikhetaii A. S., Burge W. K., Chen R. H., Visscher K. M. (2015). Retinotopic patterns of background connectivity between V1 and fronto-parietal cortex are modulated by task demands. Front. Hum. Neurosci. 9:338. 10.3389/fnhum.2015.00338
    1. Griffis J. C., Elkhetali A. S., Burge W. K., Chen R. H., Bowman A. D., Szaflarski J. P., et al. (2017). Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation. Neuroimage 146 1071–1083. 10.1016/j.neuroimage.2016.08.035
    1. Haun A. M., Peli E. (2015). Similar sensitivity to ladder contours in macular degeneration patients and controls. PLoS One 10:e0128119. 10.1371/journal.pone.0128119
    1. Jager R. D., Mieler W. F., Miller J. W. (2008). Medical progress: age-related macular degeneration. N. Eng. J. Med. 358 2606–2617.
    1. Jeong J. H., Moon N. J. (2011). A study of eccentric viewing training for low vision rehabilitation. Korean J. Ophthalmol. 25 409–416. 10.3341/kjo.2011.25.6.409
    1. Johnson C. A., Keltner J. L., Balestrery F. (1978). Effects of target size and eccentricity on visual detection and resolution. Vision Res. 18 1217–1222. 10.1016/0042-6989(78)90106-2
    1. Kahn H. A., Leibowitz H. M., Ganley J. P., Kini M. M., Colton T., Nickerson R. S., et al. (1977). The framingham eye study: I. Outline and major prevalence findings. Am. J. Epidemiol. 106 17–32. 10.1093/oxfordjournals.aje.a112428
    1. Karni A., Sagi D. (1991). Where practice makes perfect in texture-discrimination-evidence for primary visual-cortex plasticity. Proc. Natl. Acad. Sci. U.S.A. 88 4966–4970. 10.1073/pnas.88.11.4966
    1. Kwon M., Nandy A. S., Tjan B. S. (2013). Rapid and persistent adaptability of human oculomotor control in response to simulated central vision loss. Curr. Biol. 23 1663–1669. 10.1016/j.cub.2013.06.056
    1. Latham K., Whitaker D. (1996). A comparison of word recognition and reading performance in foveal and peripheral vision. Vision Res. 36 2665–2674. 10.1016/0042-6989(96)00022-3
    1. Lei H., Schuchard R. A. (1997). Using two preferred retinal loci for different lighting conditions in patients with central scotomas. Invest. Ophthalmol. Vis. Sci. 38 1812–1818.
    1. Lei Q., Chung S. T. L. (2020). Properties of the “Preferred Retinal Locus” in response to asymmetrical progression of simulated central scotomas. J. Vis. 20:1341. 10.1167/jov.20.11.1341
    1. Levi D. M. (2008). Crowding-an essential bottleneck for object recognition: a mini-review. Vision Res. 48 635–654. 10.1016/j.visres.2007.12.009
    1. Li W., Piëch V., Gilbert C. D. (2004). Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7 651–657. 10.1038/nn1255
    1. Liu R., Kwon M. (2016). Integrating oculomotor and perceptual training to induce a pseudofovea: a model system for studying central vision loss. J. Vis. 16:10. 10.1167/16.6.10
    1. Macedo A. F., Crossland M. D., Rubin G. S. (2011). Investigating unstable fixation in patients with macular disease. Invest. Ophthalmol. Vis. Sci. 52 1275–1280. 10.1167/iovs.09-4334
    1. Maniglia M., Jogin R., Visscher K. M., Seitz A. R. (2020a). We don’t all look the same; detailed examination of peripheral looking strategies after simulated central vision loss. J. Vis. 20:5. 10.1167/jov.20.13.5
    1. Maniglia M., Soler V., Trotter Y. (2020b). Combining fixation and lateral masking training enhances perceptual learning effects in patients with macular degeneration. J. Vis. 20:19. 10.1167/jov.20.10.19
    1. Maniglia M., Pavan A., Cuturi L. F., Campana G., Sato G., Casco C. (2011). Reducing crowding by weakening inhibitory lateral interactions in the periphery with perceptual learning. PLoS One 6:e25568. 10.1371/journal.pone.0025568
    1. Maniglia M., Pavan A., Sato G., Contemori G., Montemurro S., Battaglini L., et al. (2016). Perceptual learning leads to long lasting visual improvement in patients with central vision loss. Restor. Neurol. Neurosci. 34 697–720. 10.3233/RNN-150575
    1. Maniglia M., Soler V., Cottereau B., Trotter Y. (2018). Spontaneous and training-induced cortical plasticity in MD patients: hints from lateral masking. Sci. Rep. 8:90. 10.1038/s41598-017-18261-6
    1. Maniglia M., Visscher K. M., Seitz A. R. (2019). Oculomotor strategy classification in simulated central vision loss. J. Vis. 19:145c. 10.1167/19.10.145c
    1. Markowitz S. N. (2006). Principles of modern low vision rehabilitation. Can. J. Ophthalmol. 41 289–312. 10.1139/I06-027
    1. Masuda Y., Dumoulin S. O., Nakadomari S., Wandell B. A. (2008). V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb. Cortex 18 2483–2493. 10.1093/cercor/bhm256
    1. Moore T. (2001). Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. U.S.A. 98 1273–1276. 10.1073/pnas.021549498
    1. Morales M. U., Saker S., Amoaku W. M. (2015). Bilateral eccentric vision training on pseudovitelliform dystrophy with microperimetry biofeedback. BMJ Case Rep. 2015:bcr2014207969. 10.1136/bcr-2014-207969
    1. Morales M. U., Saker S., Wilde C., Rubinstein M., Limoli P., Amoaku W. M. (2020). Biofeedback fixation training method for improving eccentric vision in patients with loss of foveal function secondary to different maculopathies. Int. Ophthalmol. 40 305–312. 10.1007/s10792-019-01180-y
    1. Nilsson U. (1990). Visual rehabilitation with and without educational training in the use of optical aids and residual vision: a prospective study of patients with advanced age-related macular degeneration. Clin. Vis. Sci. 6 3–10.
    1. Nilsson U. L., Frennesson C., Nilsson S. E. G. (2003). Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Res. 43 1777–1787. 10.1016/S0042-6989(03)00219-0
    1. Petre K. L., Hazel C., Fine E. M., Rubin G. S. (2000). Reading with eccentric fixation is faster in inferior visual field than in left visual field. Optom. Vis. Sci. 77 34–39. 10.1097/00006324-200001000-00011
    1. Pidcoe P. E., Wetze P. A. (2006). Oculomotor tracking strategy in normal subjects with and without simulated scotoma. Invest. Ophthalmol. Vis. Sci. 47 169–178. 10.1167/iovs.04-0564
    1. Pijnacker J., Verstraten P., van Damme W., Vandermeulen J., Steenbergen B. (2011). Rehabilitation of reading in older individuals with macular degeneration: a review of effective training programs. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 18 708–732. 10.1080/13825585.2011.613451
    1. Plank T., Rosengarth K., Schmalhofer C., Goldhacker M., Brandl-Rhle S., Greenlee M. W. (2014). Perceptual learning in patients with macular degeneration. Front. Psychol. 5:1189. 10.3389/fpsyg.2014.01189
    1. Polat U. (2009). Making perceptual learning practical to improve visual functions. Vision Res. 49 2566–2573. 10.1016/j.visres.2009.06.005
    1. Polat U., Ma-Naim T., Belkin M., Sagi D. (2004). Improving vision in adult amblyopia by perceptual learning. Proc. Natl. Acad. Sci. U.S.A. 101 6692–6697. 10.1073/pnas.0401200101
    1. Polat U., Sagi D. (1994). Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. Proc. Natl. Acad. Sci. U.S.A 91 1206–1209. 10.1073/pnas.91.4.1206
    1. Polat U., Mizobe K., Pettet M. W., Kasamatsu T., Norcia a M. (1998). Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature 391 580–584. 10.1038/35372
    1. Richards O. W. (1977). Effects of luminance and contrast on visual acuity, ages 16 to 90 years. Optom. Vis. Sci. 54 178–184. 10.1097/00006324-197703000-00010
    1. Rosengarth K., Keck I., Brandl-Rühle S., Frolo J., Hufendiek K., Greenlee M. W., et al. (2013). Functional and structural brain modifications induced by oculomotor training in patients with age-related macular degeneration. Front. Psychol. 4:428. 10.3389/fpsyg.2013.00428
    1. Sabbah N., Sanda N., Authié C. N., Mohand-Saïd S., Sahel J. A., Habas C., et al. (2017). Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss. Sci. Rep. 7:43223. 10.1038/srep43223
    1. Safran A. B., Landis T. (1999). From cortical plasticity to unawareness of visual field defects. J. Neuroophthalmol. 19 84–88. 10.1097/00041327-199906000-00002
    1. Safran A. B., Duret F., Issenhuth M., Mermoud C. (1999). Full text reading with a central scotoma: pseudo regressions and pseudo line losses. Br. J. Ophthalmol. 83 1341–1347. 10.1136/bjo.83.12.1341
    1. Sagi D. (2011). Perceptual learning in vision research. Vision Res. 51 1552–1566. 10.1016/j.visres.2010.10.019
    1. Sahli E., Altinbay D., Bingol Kiziltunc P., Idil A. (2020). Effectiveness of low vision rehabilitation using microperimetric acoustic biofeedback training in patients with central scotoma. Curr. Eye Res. 46 731–738. 10.1080/02713683.2020.1833348
    1. Schoups A., Vogels R., Qian N., Orban G. (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature 412 549–553. 10.1038/35087601
    1. Seiple W., Szlyk J. P., McMahon T., Pulido J., Fishman G. A. (2005). Eye-movement training for reading in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 46 2886–2896. 10.1167/iovs.04-1296
    1. Seitz A., Watanabe T. (2005). A unified model for perceptual learning. Trends Cogn. Sci. 9 329–334. 10.1016/j.tics.2005.05.010
    1. Šiaudvytyte L., Mitkute D., Balčiuniene J. (2012). Quality of life in patients with age-related macular degeneration. Medicina (Lithuania) 48 109–111. 10.3390/medicina48020015
    1. Sims S. A., Demirayak P., Cedotal S., Visscher K. M. (2021). Frontal cortical regions associated with attention connect more strongly to central than peripheral V1. Neuroimage 238:118246. 10.1016/j.neuroimage.2021.118246
    1. Simunovic M. P. (2015). Metamorphopsia and its quantification. Retina 35 1285–1291. 10.1097/IAE.0000000000000581
    1. Strasburger H., Rentschler I., Jüttner M. (2011). Peripheral vision and pattern recognition: a review. J. Vis. 11:13. 10.1167/11.5.13.Contents
    1. Sullivan B., Jovancevic-Misic J., Hayhoe M., Sterns G. (2008). Use of multiple preferred retinal loci in Stargardt’s disease during natural tasks: a case study. Ophthalmic Physiol. Opt. 28 168–177. 10.1111/j.1475-1313.2008.00546.x
    1. Szpiro S. F. A., Carrasco M. (2015). Exogenous attention enables perceptual learning. Psychol. Sci. 26 1854–1862. 10.1177/0956797615598976
    1. Tan D. T. H., Fong A. (2008). Efficacy of neural vision therapy to enhance contrast sensitivity function and visual acuity in low myopia. J. Cataract Refract. Surg. 34 570–577. 10.1016/j.jcrs.2007.11.052
    1. Tarita-Nistor L., Brent M. H., Steinbach M. J., Markowitz S. N., González E. G. (2014). Reading training with threshold stimuli in people with central vision loss: a feasibility study. Optom. Vis. Sci. 91 86–96. 10.1097/OPX.0000000000000108
    1. Timberlake G. T., Mainster M. A., Peli E., Augliere R. A., Essock E. A., Arend L. E. (1986). Reading with a macular scotoma. I. Retinal location of scotoma and fixation area. Invest. Ophthalmol. Vis. Sci. 27 1137–1147.
    1. Tsodyks M., Gilbert C. (2004). Neural networks and perceptual learning. Nature 431 775–781. 10.1038/nature03013
    1. Van der Stigchel S., Bethlehem R. A. I., Klein B. P., Berendschot T. T. J. M., Nijboer T. C. W., Dumoulin S. O. (2013). Macular degeneration affects eye movement behavior during visual search. Front. Psychol. 4:579. 10.3389/fpsyg.2013.00579
    1. Verdina T., Giacomelli G., Sodi A., Pennino M., Paggini C., Murro V., et al. (2013). Biofeedback rehabilitation of eccentric fixation in patients with stargardt disease. Eur. J. Ophthalmol. 23 723–731. 10.5301/ejo.5000291
    1. Verdina T., Piaggi S., Ferraro V., Russolillo V., Peschiera R., Chester J., et al. (2020). Efficacy of biofeedback rehabilitation based on visual evoked potentials analysis in patients with advanced age-related macular degeneration. Sci. Rep. 10:20886. 10.1038/s41598-020-78076-w
    1. von Noorden G. K., Mackensen G. (1962). Phenomenology of eccentric fixation. Am. J. Ophthalmol. 53 642–661. 10.1016/0002-9394(62)91987-6
    1. Walsh D. V., Liu L. (2014). Adaptation to a simulated central scotoma during visual search training. Vision Res. 96 75–86. 10.1016/j.visres.2014.01.005
    1. Wandell B. A., Smirnakis S. M. (2009). Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 10 873–884. 10.1038/nrn2741
    1. White J. M., Bedell H. E. (1990). The oculomotor reference in humans with bilateral macular disease. Invest. Ophthalmol. Vis. Sci. 31 1149–1161.
    1. Whittaker S. G., Cummings R. W. (1990). Foveating saccades. Vision Res. 30 1363–1366. 10.1016/0042-6989(90)90009-A
    1. Whittaker S. G., Cummings R. W., Swieson L. R. (1991). Saccade control without a fovea. Vision Res. 31 2209–2218. 10.1016/0042-6989(91)90173-3
    1. Wong W. L., Su X., Li X., Cheung C. M. G., Klein R., Cheng C. Y., et al. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2 e106–e116. 10.1016/S2214-109X(13)70145-1
    1. Xiao L. Q., Zhang J. Y., Wang R., Klein S. A., Levi D. M., Yu C. (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18 1922–1926. 10.1016/j.cub.2008.10.030
    1. Xie X. Y., Liu L., Yu C. (2020). A new perceptual training strategy to improve vision impaired by central vision loss. Vision Res. 174 69–76. 10.1016/j.visres.2020.05.010
    1. Zarbin M. A. (2004). Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122 598–614. 10.1001/archopht.122.4.598
    1. Zhaoping L. (2017). Feedback from higher to lower visual areas for visual recognition may be weaker in the periphery: glimpses from the perception of brief dichoptic stimuli. Vision Res. 136 32–49. 10.1016/j.visres.2017.05.002

Source: PubMed

3
Abonnieren