Toward the Existence of a Sympathetic Neuroplasticity Adaptive Mechanism Influencing the Immune Response. A Hypothetical View-Part I

Emanuel Bottasso, Emanuel Bottasso

Abstract

The nervous system exerts a profound influence on the function of the immune system (IS), mainly through the sympathetic arm of the autonomic nervous system. In fact, the sympathetic nervous system richly innervates secondary lymphoid organs (SLOs) such as the spleen and lymph nodes. For decades, different research groups working in the field have consistently reported changes in the sympathetic innervation of the SLOs during the activation of the IS, which are characterized by a decreased noradrenergic activity and retraction of these fibers. Most of these groups interpreted these changes as a pathological phenomenon, referred to as "damage" or "injury" of the noradrenergic fibers. Some of them postulated that this "injury" was probably due to toxic effects of released endogenous mediators. Others, working on animal models of chronic stimulation of the IS, linked it to the very chronic nature of processes. Unlike these views, this first part of the present work reviews evidence which supports the hypothesis of a specific adaptive mechanism of neural plasticity from sympathetic fibers innervating SLOs, encompassing structural and functional changes of noradrenergic nerves. This plasticity mechanism would involve segmental retraction and degeneration of these fibers during the activation of the IS with subsequent regeneration once the steady state is recovered. The candidate molecules likely to mediate this phenomenon are also here introduced. The second part will extend this view as to the potential changes in sympathetic innervation likely to occur in inflamed non-lymphoid peripheral tissues and its possible immunological implications.

Keywords: neural plasticity; neuro-immune interaction; neurotrophins; secondary lymphoid organs; semaphorins; sympathetic fibers.

Copyright © 2019 Bottasso.

Figures

Figure 1
Figure 1
Proposed adaptive mechanism of neural plasticity from STs innervating secondary lymphoid organs such as the spleen. The activation of the IS may be accompanied by retraction and axonal degeneration of STs (red arrows). The activated immune cells are able to produce semaphorins and pro-neurotrophins/neurotrophins, binding to their receptors -plexins/neuropilins and Trk/p75NTR, respectively- probably expressed on STs. In particular, p75NTR may be re-expressed in a pro-inflammatory milieu. The action of these molecules may lead to an inhibition of STs integrin-mediated adhesion to ECM and depolymerization of their actin cytoskeleton, thus favoring their retraction and axonal degeneration (dotted line). In addition, semaphorins and neurotrophins/pro-neurotrophins may be produced by other non-lymphoid cell types as well (i.e., stromal cells), under cytokine influence. A direct action of cytokines as playing a role on STs retraction cannot be disregarded. Once the immune response ceases, the IS returns to the steady state and STs may regenerate, recovering the usual splenic innervation pattern (blue arrows). Neural and immunological phenomena are summarized on the left and right sides, respectively. STs, sympathetic terminals; IS, immune system; Trk, tropomyosin-related kinase; p75NTR, p75 neurotrophin receptor; ECM, extracellular matrix.

References

    1. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. (2000) 52:595–638.
    1. Padro CJ, Sanders VM. Neuroendocrine regulation of inflammation. Semin Immunol. (2014) 26:357–68. 10.1016/j.smim.2014.01.003
    1. Felten DL, Livnat S, Felten SY, Carlson SL, Bellinger DL, Yeh P. Sympathetic innervation of lymph nodes in mice. Brain Res Bull. (1984) 13:693–9. 10.1016/0361-9230(84)90230-2
    1. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun. (2007) 21:736–45. 10.1016/j.bbi.2007.03.008
    1. Felten DL, Ackerman KD, Wiegand SJ, Felten SY. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J Neurosci Res. (1987) 18:28–36, 118–21. 10.1002/jnr.490180107
    1. Felten SY, Olschowka J. Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. J Neurosci Res. (1987) 18:37–48. 10.1002/jnr.490180108
    1. Ackerman KD, Felten SY, Bellinger DL, Felten DL. Noradrenergic sympathetic innervation of the spleen: III. Development of innervation in the rat spleen. J Neurosci Res. (1987) 18:49–54, 123–5. 10.1002/jnr.490180109
    1. Burnstock G. Cotransmission. Curr Opin Pharmacol. (2004) 4:47–52. 10.1016/j.coph.2003.08.001
    1. Romano TA, Felten SY, Felten DL, Olschowka JA. Neuropeptide-Y innervation of the rat spleen: another potential immunomodulatory neuropeptide. Brain Behav Immun. (1991) 5:116–31. 10.1016/0889-1591(91)90011-X
    1. Nance DM, Burns J. Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav Immun. (1989) 3:281–90. 10.1016/0889-1591(89)90028-7
    1. Hoover DB, Brown TC, Miller MK, Schweitzer JB, Williams DL. Loss of sympathetic nerves in spleens from patients with end stage sepsis. Front Immunol. (2017) 8:1712. 10.3389/fimmu.2017.01712
    1. Grisanti LA, Perez DM, Porter JE. Modulation of immune cell function by α(1)-adrenergic receptor activation. Curr Top Membr. (2011) 67:113–38. 10.1016/B978-0-12-384921-2.00006-9
    1. Lorton D, Bellinger DL. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int J Mol Sci. (2015) 16:5635–65. 10.3390/ijms16035635
    1. Jacob F, Pérez Novo C, Bachert C, Van Crombruggen K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal. (2013) 9:285–306. 10.1007/s11302-013-9357-4
    1. Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal. (2014) 10:529–64. 10.1007/s11302-014-9427-2
    1. Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol. (2016) 16:177–92. 10.1038/nri.2016.4
    1. Petitto JM, Huang Z, McCarthy DB. Molecular cloning of NPY-Y1 receptor cDNA from rat splenic lymphocytes: evidence of low levels of mRNA expression and [125I]NPY binding sites. J Neuroimmunol. (1994) 54:81–6. 10.1016/0165-5728(94)90234-8
    1. Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H, et al. . A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med. (2005) 202:1527–38. 10.1084/jem.20051971
    1. Burnstock G. Non-synaptic transmission at autonomic neuroeffector junctions. Neurochem Int. (2008) 52:14–25. 10.1016/j.neuint.2007.03.007
    1. Murray K, Godinez DR, Brust-Mascher I, Miller EN, Gareau MG, Reardon C. Neuroanatomy of the spleen: mapping the relationship between sympathetic neurons and lymphocytes. PLoS ONE. (2017) 12:e0182416. 10.1371/journal.pone.0182416
    1. MacNeil BJ, Jansen AH, Greenberg AH, Nance DM. Activation and selectivity of splenic sympathetic nerve electrical activity response to bacterial endotoxin. Am J Physiol. (1996) 270:R264–70. 10.1152/ajpregu.1996.270.1.R264
    1. Pardini BJ, Jones SB, Filkins JP. Cardiac and splenic norepinephrine turnovers in endotoxic rats. Am J Physiol. (1983) 245:H276–83. 10.1152/ajpheart.1983.245.2.H276
    1. Fuchs BA, Campbell KS, Munson AE. Norepinephrine and serotonin content of the murine spleen: its relationship to lymphocyte beta-adrenergic receptor density and the humoral immune response in vivo and in vitro. Cell Immunol. (1988) 117:339–51. 10.1016/0008-8749(88)90123-2
    1. Kohm AP, Tang Y, Sanders VM, Jones SB. Activation of antigen-specific CD4+ Th2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J Immunol. (2000) 165:725–33. 10.4049/jimmunol.165.2.725
    1. Besedovsky HO, del Rey A, Sorkin E, Da Prada M, Keller HH. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol. (1979) 48:346–55. 10.1016/0008-8749(79)90129-1
    1. del Rey A, Besedovsky HO, Sorkin E, da Prada M, Arrenbrecht S. Immunoregulation mediated by the sympathetic nervous system, II. Cell Immunol. (1981) 63:329–34. 10.1016/0008-8749(81)90012-5
    1. del Rey A, Besedovsky HO, Sorkin E, Da Prada M, Bondiolotti GP. Sympathetic immunoregulation: difference between high- and low-responder animals. Am J Physiol. (1982) 242:R30–3. 10.1152/ajpregu.1982.242.1.R30
    1. Besedovsky HO, del Rey A, Sorkin E, Burri R, Honegger CG, Schlumpf M, et al. . T lymphocytes affect the development of sympathetic innervation of mouse spleen. Brain Behav Immun. (1987) 1:185–93. 10.1016/0889-1591(87)90020-1
    1. del Rey A, Kabiersch A, Petzoldt S, Randolf A, Besedovsky HO. Sympathetic innervation affects superantigen-induced decrease in CD4V beta 8 cells in the spleen. Ann N Y Acad Sci. (2000) 917:575–81. 10.1111/j.1749-6632.2000.tb05423.x
    1. Breneman SM, Moynihan JA, Grota LJ, Felten DL, Felten SY. Splenic norepinephrine is decreased in MRL-lpr/lpr mice. Brain Behav Immun. (1993) 7:135–43. 10.1006/brbi.1993.1015
    1. del Rey A, Kabiersch A, Petzoldt S, Besedovsky HO. Sympathetic abnormalities during autoimmune processes: potential relevance of noradrenaline-induced apoptosis. Ann N Y Acad Sci. (2003) 992:158–67. 10.1111/j.1749-6632.2003.tb03146.x
    1. del Rey A, Roggero E, Kabiersch A, Schäfer M, Besedovsky HO. The role of noradrenergic nerves in the development of the lymphoproliferative disease in Fas-deficient, lpr/lpr mice. J Immunol. (2006) 176:7079–86. 10.4049/jimmunol.176.11.7079
    1. Roggero E, Pérez AR, Pollachini N, Villar SR, Wildmann J, Besedovsky H, et al. . The sympathetic nervous system affects the susceptibility and course of Trypanosoma cruzi infection. Brain Behav Immun. (2016) 58:228–236. 10.1016/j.bbi.2016.07.163
    1. Kelley SP, Moynihan JA, Stevens SY, Grota LJ, Felten DL. Sympathetic nerve destruction in spleen in murine AIDS. Brain Behav Immun. (2003) 17:94–109. 10.1016/S0889-1591(02)00101-0
    1. Lorton D, Lubahn C, Lindquist CA, Schaller J, Washington C, Bellinger DL. Changes in the density and distribution of sympathetic nerves in spleens from Lewis rats with adjuvant-induced arthritis suggest that an injury and sprouting response occurs. J Comp Neurol. (2005) 489:260–73. 10.1002/cne.20640
    1. del Rey A, Besedovsky HO. Immune-neuro-endocrine reflexes, circuits, and networks: physiologic and evolutionary implications. Front Horm Res. (2017) 48:1–18. 10.1159/000452902
    1. Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol. (2005) 6:789–800. 10.1038/nrm1740
    1. Pasterkamp RJ, Giger RJ. Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol. (2009) 19:263–74. 10.1016/j.conb.2009.06.001
    1. Alto LT, Terman JR. Semaphorins and their signaling mechanisms. Methods Mol Biol. (2017) 1493:1–25. 10.1007/978-1-4939-6448-2_1
    1. Nakamura F, Kalb RG, Strittmatter SM. Molecular basis of semaphorin-mediated axon guidance. J Neurobiol. (2000) 44:219–29. 10.1002/1097-4695(200008)44:2<219::AID-NEU11>;2-W
    1. Mohan V, Sullivan CS, Guo J, Wade SD, Majumder S, Agarwal A, et al. . Temporal regulation of dendritic spines through NrCAM-semaphorin3F receptor signaling in developing cortical pyramidal neurons. Cereb Cortex. (2019) 29:963–977. 10.1093/cercor/bhy004
    1. Sahay A, Kim CH, Sepkuty JP, Cho E, Huganir RL, Ginty DD, et al. . Secreted semaphorins modulate synaptic transmission in the adult hippocampus. J Neurosci. (2005) 25:3613–20. 10.1523/JNEUROSCI.5255-04.2005
    1. Giacobini P, Parkash J, Campagne C, Messina A, Casoni F, Vanacker C, et al. . Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol. (2014) 12:e1001808. 10.1371/journal.pbio.1001808
    1. Parkash J, Messina A, Langlet F, Cimino I, Loyens A, Mazur D, et al. . Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun. (2015) 6:6385. 10.1038/ncomms7385
    1. Tran TS, Kolodkin AL, Bharadwaj R. Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol. (2007) 23:263–92. 10.1146/annurev.cellbio.22.010605.093554
    1. Neufeld G, Sabag AD, Rabinovicz N, Kessler O. Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med. (2012) 2:a006718. 10.1101/cshperspect.a006718
    1. Ueda Y, Kondo N, Ozawa M, Yasuda K, Tomiyama T, Kinashi T. Sema3e/Plexin D1 modulates immunological synapse and migration of thymocytes by Rap1 Inhibition. J Immunol. (2016) 196:3019–31. 10.4049/jimmunol.1502121
    1. Duke-Cohan JS, Ishikawa Y, Yoshizawa A, Choi YI, Lee CN, Acuto O, et al. . Regulation of thymocyte trafficking by Tagap, a GAP domain protein linked to human autoimmunity. Sci Signal. (2018) 11:eaan8799. 10.1126/scisignal.aan8799
    1. Kumanogoh A, Kikutani H. Immune semaphorins: a new area of semaphorin research. J Cell Sci. (2003) 116:3463–70. 10.1242/jcs.00674
    1. Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell. (2013) 4:17–26. 10.1007/s13238-012-2108-4
    1. Chapoval SP. Neuroimmune semaphorins as costimulatory molecules and beyond. Mol Med. (2018) 24:13. 10.1186/s10020-018-0014-9
    1. Lu N, Li Y, Zhang Z, Xing J, Sun Y, Yao S, Chen L. Human semaphorin-4A drives Th2 responses by binding to receptor ILT-4. Nat Commun. (2018) 9:742. 10.1038/s41467-018-03128-9
    1. Yan H, Wu L, Shih C, Hou S, Shi J, Mao T, et al. . Plexin B2 and semaphorin 4C guide T cell recruitment and function in the germinal center. Cell Rep. (2017) 19:995–1007. 10.1016/j.celrep.2017.04.022
    1. Catalano A. The neuroimmune semaphorin-3A reduces inflammation and progression of experimental autoimmune arthritis. J Immunol. (2010) 185:6373–83. 10.4049/jimmunol.0903527
    1. Ji JD, Park-Min KH, Ivashkiv LB. Expression and function of semaphorin 3A and its receptors in human monocyte-derived macrophages. Hum Immunol. (2009) 70:211–7. 10.1016/j.humimm.2009.01.026
    1. Mendes-da-Cruz DA, Brignier AC, Asnafi V, Baleydier F, Messias CV, Lepelletier Y, et al. . Semaphorin 3F and neuropilin-2 control the migration of human T-cell precursors. PLoS ONE. (2014) 9:e103405. 10.1371/journal.pone.0103405
    1. Levi-Montalcini R. The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lect. (1966) 60:217–59.
    1. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. (2000) 14:2919–37. 10.1101/gad.841400
    1. Lee FS, Kim AH, Khursigara G, Chao MV. The uniqueness of being a neurotrophin receptor. Curr Opin Neurobiol. (2001) 11:281–6. 10.1016/S0959-4388(00)00209-9
    1. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. (2003) 4:299–309. 10.1038/nrn1078
    1. Bothwell M. Recent advances in understanding neurotrophin signaling. F1000Res. (2016) 5:F1000 Faculty Rev-1885. 10.12688/f1000research.8434.1
    1. Charalampopoulos I, Vicario A, Pediaditakis I, Gravanis A, Simi A, Ibáñez CF. Genetic dissection of neurotrophin signaling through the p75 neurotrophin receptor. Cell Rep. (2012) 2:1563–70. 10.1016/j.celrep.2012.11.009
    1. Yuan W, Ibáñez CF, Lin Z. Death domain of p75 neurotrophin receptor: a structural perspective on an intracellular signalling hub. Biol Rev Camb Philos Soc. (2019) 94:1282–1293. 10.1111/brv.12502
    1. Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin receptor: a double-edged sword in pathology and regeneration of the central nervous system. Vet Pathol. (2018) 55:786–801. 10.1177/0300985818781930
    1. Tanaka K, Kelly CE, Goh KY, Lim KB, Ibáñez CF. Death domain signaling by disulfide-linked dimers of the p75 neurotrophin receptor mediates neuronal death in the CNS. J Neurosci. (2016) 36:5587–95. 10.1523/JNEUROSCI.4536-15.2016
    1. Dechant G, Barde YA. The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci. (2002) 5:1131–6. 10.1038/nn1102-1131
    1. Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, et al. . p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem. (2010) 285:20358–68. 10.1074/jbc.M109.082834
    1. Kraemer BR, Snow JP, Vollbrecht P, Pathak A, Valentine WM, Deutch AY, et al. . A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem. (2014) 289:21205–16. 10.1074/jbc.M114.563403
    1. Kohn J, Aloyz RS, Toma JG, Haak-Frendscho M, Miller FD. Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J Neurosci. (1999) 19:5393–408. 10.1523/JNEUROSCI.19-13-05393.1999
    1. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. (2001) 294:1945–8. 10.1126/science.1065057
    1. Ibáñez CF. Jekyll-Hyde neurotrophins: the story of proNGF. Trends Neurosci. (2002) 25:284–6. 10.1016/S0166-2236(02)02169-0
    1. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, et al. . Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. (2004) 306:487–91. 10.1126/science.1100135
    1. Rösch H, Schweigreiter R, Bonhoeffer T, Barde YA, Korte M. The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci U S A. (2005) 102:7362–7. 10.1073/pnas.0502460102
    1. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, et al. . Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci. (2005) 8:1069–77. 10.1038/nn1510
    1. Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B. Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol. (2009) 185:727–41. 10.1083/jcb.200811147
    1. Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN, et al. . Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. (2000) 470:113–7. 10.1016/S0014-5793(00)01302-8
    1. Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, et al. . Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost. (2002) 87:728–34 10.1055/s-0037-1613072
    1. Tamura S, Suzuki H, Hirowatari Y, Hatase M, Nagasawa A, Matsuno K, et al. . Release reaction of brain-derived neurotrophic factor (BDNF) through PAR1 activation and its two distinct pools in human platelets. Thromb Res. (2011) 128:e55–61. 10.1016/j.thromres.2011.06.002
    1. De Luca C, Papa M. Matrix metalloproteinases, neural extracellular matrix, and central nervous system pathology. Prog Mol Biol Transl Sci. (2017) 148:167–202. 10.1016/bs.pmbts.2017.04.002
    1. De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-coagulopathy: blood coagulation factors in central nervous system diseases. Int J Mol Sci. (2017) 18:E2128. 10.3390/ijms18102128
    1. De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci. (2018) 12:459. 10.3389/fncel.2018.00459
    1. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, et al. . Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. (1999) 189:865–70. 10.1084/jem.189.5.865
    1. Besser M, Wank R. Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol. (1999) 162:6303–6.
    1. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, et al. . Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun. (2000) 15:331–45. 10.1006/jaut.2000.0441
    1. Aloe L, Tuveri MA, Carcassi U, Levi-Montalcini R. Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis Rheum. (1992) 35:351–5. 10.1002/art.1780350315
    1. Bracci-Laudiero L, Aloe L, Levi-Montalcini R, Galeazzi M, Schilter D, Scully JL, et al. . Increased levels of NGF in sera of systemic lupus erythematosus patients. Neuroreport. (1993) 4:563–5. 10.1097/00001756-199305000-00025
    1. Fauchais AL, Lise MC, Marget P, Lapeybie FX, Bezanahary H, Martel C, et al. . Serum and lymphocytic neurotrophins profiles in systemic lupus erythematosus: a case-control study. PLoS ONE. (2013) 8:e79414. 10.1371/journal.pone.0079414
    1. Chiaretti A, Capozzi D, Mariotti P, Valentini P, Manni L, Buonsenso D, et al. . Increased levels of neurotrophins in the cerebrospinal fluid of children with Epstein-Barr virus meningoencephalitis. Int J Infect Dis. (2014) 20:52–7. 10.1016/j.ijid.2013.11.006
    1. Petersen LE, Baptista TSA, Molina JK, Motta JG, do Prado A, Piovesan DM, et al. . Cognitive impairment in rheumatoid arthritis: role of lymphocyte subsets, cytokines and neurotrophic factors. Clin Rheumatol. (2018) 37:1171–1181. 10.1007/s10067-018-3990-9
    1. Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. (2017) 151:1–15. 10.1111/imm.12717
    1. Dagnell C, Grunewald J, Kramar M, Haugom-Olsen H, Elmberger GP, Eklund A, et al. . Neurotrophins and neurotrophin receptors in pulmonary sarcoidosis—granulomas as a source of expression. Respir Res. (2010) 11:156. 10.1186/1465-9921-11-156
    1. Fauchais AL, Lalloué F, Lise MC, Boumediene A, Preud'homme JL, Vidal E, et al. . Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. J Immunol. (2008) 181:3027–38. 10.4049/jimmunol.181.5.3027
    1. Düsedau HP, Kleveman J, Figueiredo CA, Biswas A, Steffen J, Kliche S, et al. . p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. (2019) 67:193–211. 10.1002/glia.23553
    1. Bandoła J, Richter C, Ryser M, Jamal A, Ashton MP, von Bonin M, et al. . Neurotrophin receptor p75NTR regulates immune function of plasmacytoid dendritic cells. Front Immunol. (2017) 8:981. 10.3389/fimmu.2017.00981
    1. Datta-Mitra A, Kundu-Raychaudhuri S, Mitra A, Raychaudhuri SP. Cross talk between neuroregulatory molecule and monocyte: nerve growth factor activates the inflammasome. PLoS One. (2015) 10:e0121626. 10.1371/journal.pone.0121626
    1. Zhou XF, Rush RA, McLachlan EM. Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci. (1996) 16:2901–11. 10.1523/JNEUROSCI.16-09-02901.1996
    1. Giehl KM, Röhrig S, Bonatz H, Gutjahr M, Leiner B, Bartke I, et al. . Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. J Neurosci. (2001) 21:3492–502. 10.1523/JNEUROSCI.21-10-03492.2001
    1. Lönngren U, Näpänkangas U, Lafuente M, Mayor S, Lindqvist N, Vidal-Sanz M, et al. . The growth factor response in ischemic rat retina and superior colliculus after brimonidine pre-treatment. Brain Res Bull. (2006) 71:208–18. 10.1016/j.brainresbull.2006.09.005
    1. Kokaia Z, Andsberg G, Martinez-Serrano A, Lindvall O. Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience. (1998) 84:1113–25. 10.1016/S0306-4522(97)00579-4
    1. Volosin M, Trotter C, Cragnolini A, Kenchappa RS, Light M, Hempstead BL, et al. . Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. J Neurosci. (2008) 28:9870–9. 10.1523/JNEUROSCI.2841-08.2008
    1. Lowry KS, Murray SS, McLean CA, Talman P, Mathers S, Lopes EC, et al. . A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. (2001) 2:127–34. 10.1080/146608201753275463
    1. Dowling P, Ming X, Raval S, Husar W, Casaccia-Bonnefil P, Chao M, et al. . Up-regulated p75NTR neurotrophin receptor on glial cells in MS plaques. Neurology. (1999) 53:1676–82. 10.1212/WNL.53.8.1676
    1. Ernfors P, Lindefors N, Chan-Palay V, Persson H. (1990). Cholinergic neurons of the nucleus basalis express elevated levels of nerve growth factor receptor mRNA in senile dementia of the Alzheimer type. Dement Geriatr Cogn Disord. (1990) 1:138–145. 10.1159/000107133
    1. Choi S, Friedman WJ. Inflammatory cytokines IL-1β and TNF-α regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms. ASN Neuro. (2009) 1:e00010. 10.1042/AN20090009
    1. Cheng HJ, Bagri A, Yaron A, Stein E, Pleasure SJ, Tessier-Lavigne M. Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron. (2001) 32:249–63. 10.1016/S0896-6273(01)00478-0
    1. Chen H, Chédotal A, He Z, Goodman CS, Tessier-Lavigne M. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron. (1997) 19:547–59. 10.1016/S0896-6273(00)80371-2
    1. Waimey KE, Huang PH, Chen M, Cheng HJ. Plexin-A3 and plexin-A4 restrict the migration of sympathetic neurons but not their neural crest precursors. Dev Biol. (2008) 315:448–58. 10.1016/j.ydbio.2008.01.002
    1. Yaron A, Huang PH, Cheng HJ, Tessier-Lavigne M. Differential requirement for Plexin-A3 and -A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 Semaphorins. Neuron. (2005) 45:513–23. 10.1016/j.neuron.2005.01.013
    1. Kang HR, Lee CG, Homer RJ, Elias JA. Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med. (2007) 204:1083–93. 10.1084/jem.20061273
    1. Wang X, Kumanogoh A, Watanabe C, Shi W, Yoshida K, Kikutani H. Functional soluble CD100/Sema4D released from activated lymphocytes: possible role in normal and pathologic immune responses. Blood. (2001) 97:3498–504. 10.1182/blood.V97.11.3498
    1. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. (1993) 75:217–27. 10.1016/0092-8674(93)80064-L
    1. Brown JA, Bridgman PC. Disruption of the cytoskeleton during Semaphorin 3A induced growth cone collapse correlates with differences in actin organization and associated binding proteins. Dev Neurobiol. (2009) 69:633–46. 10.1002/dneu.20732
    1. Barberis D, Artigiani S, Casazza A, Corso S, Giordano S, Love CA, et al. . Plexin signaling hampers integrin-based adhesion, leading to Rho-kinase independent cell rounding, and inhibiting lamellipodia extension and cell motility. FASEB J. (2004) 18:592–4. 10.1096/fj.03-0957fje
    1. Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci. (2008) 9:344–56. 10.1038/nrn2373
    1. Song H, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M, et al. . Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science. (1998) 281:1515–8. 10.1126/science.281.5382.1515
    1. Dalpé G, Zhang LW, Zheng H, Culotti JG. Conversion of cell movement responses to Semaphorin-1 and Plexin-1 from attraction to repulsion by lowered levels of specific RAC GTPases in C. elegans. Development. (2004) 131:2073–88. 10.1242/dev.01063
    1. Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, et al. . Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron. (2004) 44:961–75. 10.1016/j.neuron.2004.12.002
    1. Wolman MA, Liu Y, Tawarayama H, Shoji W, Halloran MC. Repulsion and attraction of axons by semaphorin3D are mediated by different neuropilins in vivo. J Neurosci. (2004) 24:8428–35. 10.1523/JNEUROSCI.2349-04.2004
    1. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, et al. . Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci. (2000) 20:5283–91. 10.1523/JNEUROSCI.20-14-05283.2000
    1. Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol. (2003) 53:292–304. 10.1002/ana.10446
    1. Ibáñez CF, Simi A. p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci. (2012) 35:431–40. 10.1016/j.tins.2012.03.007
    1. Singh KK, Miller FD. Activity regulates positive and negative neurotrophin-derived signals to determine axon competition. Neuron. (2005) 45:837–45. 10.1016/j.neuron.2005.01.049
    1. Singh KK, Park KJ, Hong EJ, Kramer BM, Greenberg ME, Kaplan DR, et al. . Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci. (2008) 11:649–58. 10.1038/nn.2114
    1. Park KJ, Grosso CA, Aubert I, Kaplan DR, Miller FD. p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nat Neurosci. (2010) 13:559–66. 10.1038/nn.2513
    1. Kemi C, Grunewald J, Eklund A, Höglund CO. Differential regulation of neurotrophin expression in human bronchial smooth muscle cells. Respir Res. (2006) 7:18. 10.1186/1465-9921-7-18
    1. Takaoka K, Shirai Y, Saito N. Inflammatory cytokine tumor necrosis factor-alpha enhances nerve growth factor production in human keratinocytes, HaCaT cells. J Pharmacol Sci. (2009) 111:381–91. 10.1254/jphs.09143FP
    1. Tominaga M, Ozawa S, Ogawa H, Takamori K. A hypothetical mechanism of intraepidermal neurite formation in NC/Nga mice with atopic dermatitis. J Dermatol Sci. (2007) 46:199–210. 10.1016/j.jdermsci.2007.02.002
    1. Tominaga M, Ozawa S, Tengara S, Ogawa H, Takamori K. Intraepidermal nerve fibers increase in dry skin of acetone-treated mice. J Dermatol Sci. (2007) 48:103–11. 10.1016/j.jdermsci.2007.06.003
    1. Kamo A, Tominaga M, Tengara S, Ogawa H, Takamori K. Inhibitory effects of UV-based therapy on dry skin-inducible nerve growth in acetone-treated mice. J Dermatol Sci. (2011) 62:91–7. 10.1016/j.jdermsci.2011.01.004
    1. Lorton D, Bellinger DL, Felten SY, Felten DL. Substance P innervation of spleen in rats: nerve fibers associate with lymphocytes and macrophages in specific compartments of the spleen. Brain Behav Immun. (1991) 5:29–40. 10.1016/0889-1591(91)90005-U
    1. Kurkowski R, Kummer W, Heym C. Substance P-immunoreactive nerve fibers in tracheobronchial lymph nodes of the guinea pig: origin, ultrastructure and coexistence with other peptides. Peptides. (1990) 11:13–20. 10.1016/0196-9781(90)90103-C
    1. Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun. (1993) 7:191–204. 10.1006/brbi.1993.1021
    1. Schäfer MK, Eiden LE, Weihe E. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience. (1998) 84:361–76. 10.1016/S0306-4522(97)80196-0
    1. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. . Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. (2011) 334:98–101. 10.1126/science.1209985
    1. Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. (2017) 20:156–66. 10.1038/nn.4477
    1. Balice-Gordon RJ, Chua CK, Nelson CC, Lichtman JW. Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions. Neuron. (1993) 11:801–15. 10.1016/0896-6273(93)90110-D
    1. Lo YJ, Lin YC, Sanes DH, Poo MM. Depression of developing neuromuscular synapses induced by repetitive postsynaptic depolarizations. J Neurosci. (1994) 14:4694–704. 10.1523/JNEUROSCI.14-08-04694.1994
    1. Cash S, Dan Y, Poo MM, Zucker R. Postsynaptic elevation of calcium induces persistent depression of developing neuromuscular synapses. Neuron. (1996) 16:745–54. 10.1016/S0896-6273(00)80095-1
    1. Owman C. Pregnancy induces degenerative and regenerative changes in the autonomic innervation of the female reproductive tract. Ciba Found Symp. (1981) 83:252–79. 10.1002/9780470720653.ch13
    1. Varol FG, Duchemin AM, Neff NH, Hadjiconstantinou M. Nerve growth factor (NGF) and NGF mRNA change in rat uterus during pregnancy. Neurosci Lett. (2000) 294:58–62. 10.1016/S0304-3940(00)01533-0
    1. Zoubina EV, Smith PG. Sympathetic hyperinnervation of the uterus in the estrogen receptor alpha knock-out mouse. Neuroscience. (2001) 103:237–44. 10.1016/S0306-4522(00)00549-2
    1. Krizsan-Agbas D, Pedchenko T, Hasan W, Smith PG. Oestrogen regulates sympathetic neurite outgrowth by modulating brain derived neurotrophic factor synthesis and release by the rodent uterus. Eur J Neurosci. (2003) 18:2760–8. 10.1111/j.1460-9568.2003.03029.x
    1. Richeri A, Bianchimano P, Mármol NM, Viettro L, Cowen T, Brauer MM. Plasticity in rat uterine sympathetic nerves: the role of TrkA and p75 nerve growth factor receptors. J Anat. (2005) 207:125–34. 10.1111/j.1469-7580.2005.00435.x
    1. Brauer MM. Cellular and molecular mechanisms underlying plasticity in uterine sympathetic nerves. Auton Neurosci. (2008) 140:1–16. 10.1016/j.autneu.2008.02.002
    1. Latini C, Frontini A, Morroni M, Marzioni D, Castellucci M, Smith PG. Remodeling of uterine innervation. Cell Tissue Res. (2008) 334:1–6. 10.1007/s00441-008-0657-x
    1. Brauer MM, Smith PG. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci. (2015) 187:1–17. 10.1016/j.autneu.2014.11.009
    1. Brauer MM. Plasticity in uterine innervation: state of the art. Curr Protein Pept Sci. (2017) 18:108–119. 10.2174/1389203717666160322145411
    1. Tuttle R, O'Leary DD. Neurotrophins rapidly modulate growth cone response to the axon guidance molecule, collapsin-1. Mol Cell Neurosci. (1998) 11:1–8. 10.1006/mcne.1998.0671
    1. Dontchev VD, Letourneau PC. Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci. (2002) 22:6659–69. 10.1523/JNEUROSCI.22-15-06659.2002
    1. Atwal JK, Singh KK, Tessier-Lavigne M, Miller FD, Kaplan DR. Semaphorin 3F antagonizes neurotrophin-induced phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase signaling: a mechanism for growth cone collapse. J Neurosci. (2003) 23:7602–9. 10.1523/JNEUROSCI.23-20-07602.2003
    1. Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. (2015) 38:145–57. 10.1016/j.tins.2014.12.006
    1. Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci. (2013) 5:6. 10.3389/fnsyn.2013.00006
    1. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, et al. . Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell. (1996) 87:1001–14. 10.1016/S0092-8674(00)81795-X
    1. Salminen M, Meyer BI, Bober E, Gruss P. Netrin 1 is required for semicircular canal formation in the mouse inner ear. Development. (2000) 127:13–22.
    1. Bouvrée K, Larrivée B, Lv X, Yuan L, DeLafarge B, Freitas C, et al. . Netrin-1 inhibits sprouting angiogenesis in developing avian embryos. Dev Biol. (2008) 318:172–83. 10.1016/j.ydbio.2008.03.023
    1. Delloye-Bourgeois C, Brambilla E, Coissieux MM, Guenebeaud C, Pedeux R, Firlej V, et al. . Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst. (2009) 101:237–47. 10.1093/jnci/djn491
    1. Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ, et al. . Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci USA. (2005) 102:14729–34. 10.1073/pnas.0506233102
    1. Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, et al. . Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol. (2009) 10:195–202. 10.1038/ni.1683
    1. Chisholm A, Tessier-Lavigne M. Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol. (1999) 9:603–15. 10.1016/S0959-4388(99)00021-5
    1. Brunet I, Gordon E, Han J, Cristofaro B, Broqueres-You D, Liu C, et al. . Netrin-1 controls sympathetic arterial innervation. J Clin Invest. (2014) 124:3230–40. 10.1172/JCI75181
    1. Besedovsky H, Sorkin E, Felix D, Haas H. Hypothalamic changes during the immune response. Eur J Immunol. (1977) 7:323–5. 10.1002/eji.1830070516
    1. Torpy DJ, Chrousos GP. The three-way interactions between the hypothalamic-pituitary-adrenal and gonadal axes and the immune system. Baillieres Clin Rheumatol. (1996) 10:181–98. 10.1016/S1521-6942(06)80039-2
    1. Silverman MN, Pearce BD, Biron CA, Miller AH. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol. (2005) 18:41–78. 10.1089/vim.2005.18.41
    1. Engler H, Doenlen R, Engler A, Riether C, Prager G, Niemi MB, et al. . Acute amygdaloid response to systemic inflammation. Brain Behav Immun. (2011) 25:1384–92. 10.1016/j.bbi.2011.04.005
    1. Panina-Bordignon P, Mazzeo D, Lucia PD, D'Ambrosio D, Lang R, Fabbri L, et al. . Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest. (1997) 100:1513–9. 10.1172/JCI119674
    1. Cole SW, Korin YD, Fahey JL, Zack JA. Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J Immunol. (1998) 161:610–6.
    1. Ramer-Quinn DS, Swanson MA, Lee WT, Sanders VM. Cytokine production by naive and primary effector CD4+ T cells exposed to norepinephrine. Brain Behav Immun. (2000) 14:239–55. 10.1006/brbi.2000.0603
    1. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, et al. . Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience. (2005) 135:1295–307. 10.1016/j.neuroscience.2005.06.090
    1. Grebe KM, Takeda K, Hickman HD, Bailey AL, Embry AC, Bennink JR, et al. . Cutting edge: sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis. J Immunol. (2010) 184:540–4. 10.4049/jimmunol.0903395
    1. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. (2016) 17:497–511. 10.1038/nrn.2016.69
    1. Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S, et al. . The sympathetic nervous system modulates CD4+Foxp3+ regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun. (2014) 38:100–10. 10.1016/j.bbi.2014.01.007
    1. Bhowmick S, Singh A, Flavell RA, Clark RB, O'Rourke J, Cone RE. The sympathetic nervous system modulates CD4+FoxP3+ regulatory T cells via a TGF-beta-dependent mechanism. J Leukoc Biol. (2009) 86:1275–83. 10.1189/jlb.0209107

Source: PubMed

3
Abonnieren