Embodiment in Virtual Reality for the Treatment of Chronic Low Back Pain: A Case Series

Michael S Trujillo, Anthony F Alvarez, Lincoln Nguyen, James Petros, Michael S Trujillo, Anthony F Alvarez, Lincoln Nguyen, James Petros

Abstract

Purpose: We describe two case studies that use embodiment in virtual reality as a treatment for chronic low back pain. The purpose of this case series was to determine the feasibility of a novel virtual reality-based digital therapeutic for the treatment of chronic pain.

Patients and methods: Two patients with chronic low back pain received seven sessions, two sessions per week, of a novel digital therapeutic that combines virtual embodiment with graded motor imagery to deliver functional rehabilitation exercises using an off-the-shelf virtual reality system. Pain intensity was measured using a visual analog scale before and after each session to get an indication whether individual sessions of virtual embodiment training decrease pain intensity. Pain catastrophizing scale was assessed before the first session and after the seventh session to determine the extent to which virtual embodiment training can improve psychological symptoms of chronic low back pain.

Results: In both patients, pain intensity was improved after individual sessions of virtual embodiment training as measured by a paired t-test: (Patient A: t = 2.890, P < 0.05) and (Patient B: t = 5.346, P < 0.005). This indicates that individual sessions of virtual embodiment training decrease pain intensity. In both patients, improvements were observed in three subscales of the pain catastrophizing scale (rumination, magnification, and helplessness). This indicates that virtual embodiment training may have benefits for chronic pain symptoms such as pain intensity, pain-related mobility impairment, and disability.

Conclusion: This case series provides evidence that embodiment in virtual reality improves symptoms of persistent chronic low back pain. We propose a mechanism by which virtual embodiment may improve chronic pain symptoms by recontextualizing sensory feedback from the body as patients engage in functional rehabilitation exercises while in virtual reality.

Keywords: centralized pain; digital therapeutics; pain catastrophizing scale; sensorimotor; visual analog scale.

Conflict of interest statement

Michael S. Trujillo, Anthony F. Alvarez, and Lincoln Nguyen are employed by Karuna Labs, Inc. James Petros has stock options in Karuna Labs, Inc. The authors report no other conflicts of interest in this work.

© 2020 Trujillo et al.

Figures

Figure 1
Figure 1
An example of KVET™ low back exercises. The patient sees the virtual avatar in the first person (front facing forward). A model avatar demonstrates proper lumbar spine exercises which include lumbar flexion, extension, and left and right lateral extension. The avatar to the left produces mirror images of movements performed by the embodied avatar.
Figure 2
Figure 2
Visual analog scale (VAS) before and after KVET™ for patient A (top) and patient B (bottom).

References

    1. Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH, Solutions RTIH. The prevalence of chronic pain in United States adults: results of an internet-based survey. J Pain. 2010;11(11):1230–1239. doi:10.1016/j.jpain.2010.07.002
    1. Nahin RL. HHS public access. J Pain. 2016;16(8):769–780. doi:10.1016/j.jpain.2015.05.002.Estimates
    1. Van Hecke O, Torrance N, Smith BH. Chronic pain epidemiology and its clinical relevance. Br J Anaesth. 2013;111(1):13–18. doi:10.1093/bja/aet123
    1. Bouhassira D, Lantéri-minet M, Attal N, et al. Prevalence of chronic pain with neuropathic characteristics in the general population. To cite this version: HAL Id: inserm-00326893 population. Pain. 2008;136(3):380–387. doi:10.1016/j.pain.2007.08.013
    1. Apkarian AV, Sosa Y, Krauss BR, et al. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108:129–136. doi:10.1016/j.pain.2003.12.015
    1. Leresche L, Turner JA, Saunders K, Shortreed SM, Von Korff M. Psychophysical tests as predictors of back pain chronicity in primary care. J Pain. 2013;14(12):1663–1670. doi:10.1016/j.jpain.2013.08.008
    1. Volkow N, McLellan A, Longo DL. Opioid abuse in chronic pain — misconceptions and mitigation strategies. N Engl J Med. 2016;374(13):1253–1263. doi:10.1056/NEJMra1507771
    1. Wilson N, Kariisa M, Seth P, Smith H IV, Davis NL. Drug and Opioid-Involved Overdose Deaths — United States, 2017–2018. MMWR Morb Mortal Wkly Rep 2020;69:290–297. doi:10.15585/mmwr.mm6911a4
    1. Matamala-gomez M, Donegan T, Bottiroli S, et al. Immersive virtual reality and virtual embodiment for pain relief. Front Hum Neurosci. 2019;13(August):1–12. doi:10.3389/fnhum.2019.00279
    1. Malloy KM, Milling LS. The effectiveness of virtual reality distraction for pain reduction: a systematic review. Clin Psychol Rev. 2010;30(8):1011–1018. doi:10.1016/j.cpr.2010.07.001
    1. Mallari B, Spaeth EK, Goh H, Boyd BS. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta- analysis. J Pain Res. 2019;12:2053–2085. doi:10.2147/JPR.S200498
    1. Greenleaf W. How Virtual and Augmented Reality Will Change the Way We Shop. Techno FAQ; 2017.
    1. Hoffman HG, Doctor JN, Patterson DR, Carrougher GJ, Furness TA. Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain. 2000;85(1–2):305–309. doi:10.1016/S0304-3959(99)00275-4
    1. Hoffman HG, Seibel EJ, Richards TL, Furness TA, Patterson DR, Sharar SR. Virtual reality helmet display quality influences the magnitude of virtual reality analgesia. J Pain. 2006;7(11):843–850. doi:10.1016/j.jpain.2006.04.006
    1. Hoffman HG, Richards TL, Van Oostrom T. The analgesic effects of opioids and immersive virtual reality distraction: evidence from subjective and functional brain imaging assessments. Anesth Analg. 2007;105(6):1176–1783. doi:10.1213/01.ane.0000270205.45146.db
    1. Carrougher GJ, Hoffman HG, Nakamura D. The effect of virtual reality on pain and range of motion in adults with burn injuries. J Burn Care Res. 2009;30(5):785–791. doi:10.1097/BCR.0b013e3181b485d3
    1. Schmitt YS, Hoffman HG, Blough DK. A randomized, controlled trial of immersive virtual reality analgesia, during physical therapy for pediatric burns. Burns. 2011;37(1):61–68. doi:10.1016/j.burns.2010.07.007
    1. Gold JI, Ph D, Belmont KA, Thomas DA, Ph D. The neurobiology of virtual reality pain attenuation. Cyberpsychol Behav. 2007;10(4):536–545. doi:10.1089/cpb.2007.9993
    1. Zhuo M. Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc Lond B Biol Sci. 2014;369(1633):20130146. doi:10.1098/rstb.2013.0146
    1. Urien L, Xiao Z, Dale J, Bauer EP, Chen Z. Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation. Sci Rep. 2018;8(8298):1–15. doi:10.1038/s41598-018-26518-x
    1. Sandkühler J, Gruber-Schoffnegger D. Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol. 2012;12(1):18–27. doi:10.1016/j.coph.2011.10.018
    1. Sharar SR, Carrougher GJ, Nakamura D, Hoffman HG, Blough DK, Patterson DR. Factors influencing the efficacy of virtual reality distraction analgesia during postburn physical therapy: preliminary results from 3 ongoing studies. Arch Phys Med Rehabil. 2007;88(12SUPPL. 2):43–49. doi:10.1016/j.apmr.2007.09.004
    1. Kilteni K, Groten R, Slater M. The sense of embodiment in virtual reality. Presence. 2012;21(4):373–387. doi:10.1162/PRES_a_00124
    1. Ehrsson HH, Holmes NP, Passingham RE. Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci. 2005;25(45):10564–10573. doi:10.1523/JNEUROSCI.0800-05.2005
    1. Trujillo M, Alvarez A, Crossland D, Petros J, Nguyen L. Virtual embodiment in virtual reality reveals mirror visual feedback influences on pain-free range of motion. Postgrad Med. 2019;31(S1):64–65.
    1. Petersen W, Ellermann A, Gösele-Koppenburg A, et al. Patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2264–2274. doi:10.1007/s00167-013-2759-6
    1. Tsuji T, Matsuyama Y, Goto M, et al. Knee – spine syndrome: correlation between sacral inclination and patellofemoral joint pain. J Orthop Sci. 2002;7(5):519–523. doi:10.1007/s007760200092
    1. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol. 1993;3(3):203–220. doi:10.1207/s15327108ijap0303_3
    1. Moseley GL. Graded motor imagery is effective for long-standing complex regional pain syndrome: a randomised controlled trial. Pain. 2004;108(1–2):192–198. doi:10.1016/j.pain.2004.01.006
    1. Price DD, Mcgrath PA, Rafii A, Buckingham B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain. 1983;17(1):45–56. doi:10.1016/0304-3959(83)90126-4
    1. Picavet HSJ, Vlaeyen JWS, Schouten JSAG. Pain catastrophizing and kinesiophobia: predictors of chronic low back pain. Am J Epidemiol. 2002;156(11):1028–1034. doi:10.1093/aje/kwf136
    1. Hadi MA, McHugh GA, Closs SJ. Impact of chronic pain on patients’ quality of life: a Comparative Mixed-Methods Study. J Patient Exp. 2018;6(2):133–141. doi:10.1177/2374373518786013
    1. Elliott TE, Renier CM, Palcher JA. Chronic pain, depression, and quality of life: correlations and predictive value of the SF-36. Pain Med. 2003;4(4):331–339. doi:10.1111/j.1526-4637.2003.03040.x
    1. B artoli A, Kiminek C. What Do The CDC Guidelines Mean for Patients on Long-term High-dose Opioids. Practical Pain Management: Opioid Prescribing and Monitoring. 2017. Available from: . Accessed August 1, 2020.
    1. Phillips K, Daniel CJ. Central pain mechanisms in chronic pain states – maybe it is all in their head. Best Pract Res Clin Rheumatol. 2011;25(2):141–154. doi:10.1016/j.berh.2011.02.005.Central
    1. Henry DE, Chiodo AE, Yang W. Central nervous system reorganization in a variety of chronic pain states: a review. Clin Rev. 2011;3(December):1116–1125. doi:10.1016/j.pmrj.2011.05.018
    1. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. doi:10.1016/j.jpain.2009.06.012
    1. Wälti P, Kool J, Luomajoki H. Short-term effect on pain and function of neurophysiological education and sensorimotor retraining compared to usual physiotherapy in patients with chronic or recurrent non-specific low back pain, a pilot randomized controlled trial. BMC Musculoskelet Disord. 2015;16(1):83. doi:10.1186/s12891-015-0533-2
    1. Darnall BD, Mackey SC, Lorig K, et al. Comparative effectiveness of cognitive behavioral therapy for chronic pain and chronic pain self-management within the context of voluntary patient-centered prescription opioid tapering: the EMPOWER Study Protocol. Pain Med. 2020;21(8):1523–1531. doi:10.1093/pm/pnz285
    1. Songer D. Psychotherapeutic approaches in the treatment of pain. Psychiatry. 2005;2(5):19–24.
    1. Lumley MA, Schubiner H. Psychological therapy for centralized pain: an integrative assessment and treatment model. Psychosom Med. 2019;81(2):114–124. doi:10.1097/PSY.0000000000000654
    1. Riva G, Wiederhold BK, Mantovani F. Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol Behav Soc Netw. 2018;22(1):82–96. doi:10.1089/cyber.2017.29099.gri
    1. Wright WG. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds. Front Syst Neurosci. 2014;8:56. doi:10.3389/fnsys.2014.00056
    1. Bourdin P, Martini M, Sanchez-Vives MV. Altered visual feedback from an embodied avatar unconsciously influences movement amplitude and muscle activity. Sci Rep. 2019;9(1):19747. doi:10.1038/s41598-019-56034-5
    1. Czub M, Piskorz J. Body movement reduces pain intensity in virtual reality – based analgesia body movement reduces pain intensity in virtual reality – based analgesia. Int J Hum Comput. 2018;1–7. doi:10.1080/10447318.2017.1412144
    1. Gordon C, Barbullushi A, Tombolini S, et al. Visuo–tactile stimulation, but not type of movement, modulates pain during the vision of a moving virtual limb. Pain Manag. 2019;9(5):449–460. doi:10.2217/pmt-2019-0019
    1. Pozeg P, Palluel E, Ronchi R, et al. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology. 2017;89(18):1894–1903. doi:10.1212/WNL.0000000000004585
    1. Matamala-Gomez M, Diaz Gonzalez AM, Slater M, Sanchez-Vives MV. Decreasing pain ratings in chronic arm pain through changing a virtual body: different strategies for different pain types. J Pain. 2019;20(6):685–697. doi:10.1016/j.jpain.2018.12.001
    1. Quartana PJ, Campbell CM, Edwards RR. Pain catastrophizing: a critical review. Expert Rev Neurother. 2009;9(5):745–758. doi:10.1586/ern.09.34

Source: PubMed

3
Abonnieren