What Does the n-Back Task Measure as We Get Older? Relations Between Working-Memory Measures and Other Cognitive Functions Across the Lifespan

Patrick D Gajewski, Eva Hanisch, Michael Falkenstein, Sven Thönes, Edmund Wascher, Patrick D Gajewski, Eva Hanisch, Michael Falkenstein, Sven Thönes, Edmund Wascher

Abstract

Working memory (WM) declines with increasing age. The WM capacity is often measured by means of the computerized version of the n-back task. Although the n-back task is widely used in aging research, little is known about its construct validity and specific cognitive functions involved in this task. Moreover, to date, no studies analyzed the construct validity as a function of age. To this end, we conducted a study in a sample of N = 533 individuals aged between 20 and 80 years. The sample was divided into three age groups: young (20-40), middle-aged (41-60), and old (61-80 years). A number of psychometric tests was selected that measure attention, memory, and executive control to elucidate the impact of these constructs on n-back performance. A series of correlation analyses was conducted to assess the relationship between n-back performance and specific cognitive functions in each age group separately. The results show a progressive increase in reaction times and a decrease in the proportion of detected targets from young to old subjects. Age-related impairments were also found in all psychometric tests except for the vocabulary choice test measuring crystallized intelligence. Most importantly, correlations yielded different age-related patterns of functions contributing to performance in the n-back task: whereas performance was most related to executive functions in young age, a combination of attentional and executive processes was associated with performance in middle-aged subjects. In contrast, in older age, mainly attentional, verbal memory, and updating and to a lesser extent executive processes seem to play a crucial role in the n-back task, suggesting a shift of processing strategies across the lifespan.

Keywords: aging; attention; cognitive functions; n-back; stroop interference; verbal memory; working memory.

Figures

FIGURE 1
FIGURE 1
RTs in 0-back- and 2-back tasks in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 2
FIGURE 2
Percent of missed targets in 0-back- and 2-back tasks in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 3
FIGURE 3
Digit span. Number of correctly repeated numerical series in forward and in reverse order in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 4
FIGURE 4
Total number of correctly produced words in the Verbal-Fluency Test in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 5
FIGURE 5
Total number of correctly produced words in subtests of the Verbal Learning and Memory Test (VLMT) in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 6
FIGURE 6
Total number of correctly marked words in Multiple Choice Vocabulary Test (MWT-B) in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 7
FIGURE 7
Total number of correctly produced symbols in the Digit-Symbol-Test (DST) in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 8
FIGURE 8
z-transformed number of correctly marked symbols in the d2 Test in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 9
FIGURE 9
Mean time in seconds needed to conduct Stroop 1, 2, and 3 tasks in young, middle-aged, and old groups. Error bars reflect standard deviations.
FIGURE 10
FIGURE 10
Mean time in seconds needed to conduct TMT-A and TMT-B tasks in young, middle-aged, and old groups. Error bars reflect standard deviations.

References

    1. Ackerman P. L., Beier M. E., Boyle M. O. (2005). Working memory and intelligence: the same or different constructs? Psychol. Bull. 131 30–60. 10.1037/0033-2909.131.1.30
    1. Baddeley A. D. (1986). Working Memory. Oxford: Oxford University Press.
    1. Baltes P. B. (1987). Theoretical propositions of life-span developmental psychology: on the dynamics between growth and decline. Dev. Psychol. 23 611–626. 10.1037/0012-1649.23.5.611
    1. Basak C., Verhaeghen P. (2011). Aging and switching the focus of attention in working memory: age differences in item availability but not in item accessibility. J. Gerontol. B Psychol. Sci. Soc. Sci. 66B, 519–526. 10.1093/geronb/gbr028
    1. Bopp K. L., Verhaeghen P. (2018). Aging and n-back performance: a meta-analysis. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018:gby024. 10.1093/geronb/gby024
    1. Braver T. S., West R. (2008). “Working memory, executive control, and aging,” in The Handbook of Aging and Cognition, 3rd Edn, eds Craik F. I., Salthouse T. (New York, NY: Psychology Press; ), 311–372.
    1. Brickenkamp R. (1972). d2-Aufmerksamkeits-Belastungs-Test. Göttingen: Hogrefe.
    1. Case R., Kurland M. D., Goldberg J. (1982). Operational efficiency and the growth of short-term memory span. J. Exp. Child Psychol. 33 386–404. 10.1016/0022-0965(82)90054-6
    1. Chatham C. H., Badre D. (2015). Multiple gates on working memory. Curr. Opin. Behav. Sci. 1 23–31. 10.1016/j.cobeha.2014.08.001
    1. Ciesielski K. T., Lesnik P. G., Savoy R. L., Grant E. P., Ahlfors S. P. (2006). Developmental neural networks in children performing a categorical N-back task. Neuroimage 33 980–990. 10.1016/j.neuroimage.2006.07.028
    1. Colom R., Abad F. J., Quiroga M. A., Shih P. C., Flores-Mendoza C. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence 36 584–606. 10.1016/j.intell.2008.01.002
    1. Conway A. R. A., Kane M. J., Bunting M. F., Hambrick D. Z., Wilhelm O., Engle R. W. (2005). Working memory span tasks: a methodological review and user’s guide. Psychonom. Bull. Rev. 12 769–786. 10.3758/BF03196772
    1. Conway A. R. A., Kane M. J., Engle R. W. (2003). Working memory capacity and its relation to general intelligence. Trends Cogn. Sci. 7 547–552. 10.1016/j.tics.2003.10.005
    1. Craik E. L. M. (1977). “Age differences in human memory,” in Handbook of the Psychology of Aging, eds Birren J. E., Schaie K. W. (New York, NY: Van Nostrand Reinhold; ), 384–420.
    1. Daffner K. R., Chong H., Sun X., Tarbi E. C., Riis J. L., McGinnis S. M., et al. (2011). Mechanisms underlying age- and performance-related differences in working memory. J. Cogn. Neurosci. 23 1298–1314. 10.1162/jocn.2010.21540
    1. Daneman M., Carpenter P. A. (1980). Individual differences in working memory and reading. J. Verbal Learning Verbal Behav. 19 450–466. 10.1016/S0022-5371(80)90312-6
    1. Diamond A. (2013). Executive functions. Annu. Rev. Psychol. 64 135–168. 10.1146/annurev-psych-113011-143750
    1. Dobbs A. R., Rule B. G. (1989). Adult age differences in working memory. Psychol. Aging 4 500–503. 10.1037/0882-7974.4.4.500
    1. Ecker U. K., Oberauer K., Lewandowsky S. (2014). Working memory updating involves item-specific removal. J. Mem. Lang. 74 1–15. 10.1016/j.jml.2014.03.006
    1. Engle R. W., Tuholski S. W., Laughlin J. E., Conway A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: a latent variable approach. J. Exp. Psychol. Gen. 128 309–331. 10.1037/0096-3445.128.3.309
    1. Friedman N. P., Miyake A., Corley R. P., Young S. E., Defries J. C., Hewitt J. K. (2006). Not all executive functions are related to intelligence. Psychol. Sci. 17 172–179. 10.1111/j.1467-9280.2006.01681.x
    1. Friedman N. P., Miyake A., Young S. E., Defries J. C., Corley R. P., Hewitt J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. J. Exp. Psychol. Gen. 137 201–225. 10.1037/0096-3445.137.2.201
    1. Gajewski P. D., Falkenstein M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical and relaxation training. Front. Hum. Neurosci. 6:130. 10.3389/fnhum.2012.00130
    1. Gajewski P. D., Falkenstein M. (2014). Age-related ERP and oscillatory EEG-dynamics in the n-back task. J. Psychophysiol. 28 162–177. 10.1027/0269-8803/a000123
    1. Gajewski P. D., Falkenstein M. (2015). Long-term physical activity is associated with lower distractibility in a Stroop interference task in older age: ERP evidence. Brain Cogn. 98 89–101. 10.1016/j.bandc.2015.06.004
    1. Gajewski P. D., Falkenstein M. (2018). ERP and behavioral effects of physical and cognitive training on working memory in aging: a randomized controlled study. Neural Plast 2018:3454835. 10.1155/2018/3454835
    1. Gajewski P. D., Ferdinand N., Kray J., Falkenstein M. (2018). Understanding sources of adult age differences in task switching: behavioural and ERP studies. Neurosci. Biobehav. Rev. 92 255–275. 10.1016/j.neubiorev.2018.05.029
    1. Gajewski P. D., Freude G., Falkenstein M. (2017). Cognitive training sustainably improves executive functioning in middle aged industry workers assessed by task switching: a randomized controlled ERP study. Front. Hum. Neurosci. 11:81. 10.3389/fnhum.2017.00081
    1. Gevins A., Smith M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex 10 829–839. 10.1093/cercor/10.9.829
    1. Grégoire J., Van der Linden M. (1997). Effect of age on forward and backward digit spans. Aging Neuropsychol. Cogn. 4 140–149. 10.1080/13825589708256642
    1. Hasher L., Zacks R. T. (1988). “Working memory, comprehension, and aging: a review and a new view,” in The Psychology of Learning and Motivation: Advances in Research and Theory, ed. Bower G. H. (San Diego, CA: Academic press; ), 193–225.
    1. Hazy T. E., Frank M. J., O’Reilly R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience 139 105–118. 10.1016/j.neuroscience.2005.04.067
    1. Hedden T., Gabrieli J. D. E. (2004). Insights into the aging mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5 87–96. 10.1038/nrn1323
    1. Hockey A., Geffen G. (2004). The concurrent validity and test-retest reliability of a visuospatial working memory task. Intelligence 32 591–605. 10.1016/j.intell.2004.07.009
    1. Horn J. L., Cattell R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychol. 26 107–129. 10.1016/0001-6918(67)90011-X
    1. Horn W. (1983). L-P-S Leistungsprüfsystem. Göttingen: Hogrefe.
    1. Jaeggi S. M., Buschkuehl M., Jonides J., Perrig W. J. (2008). Improving fluid intelligence with training on working memory. Proc. Nat. Acad. Sci. U.S.A. 105 6829–6833. 10.1073/pnas.0801268105
    1. Jaeggi S. M., Buschkuehl M., Perrig W. J., Meier B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory 18 394–412. 10.1080/09658211003702171
    1. Jonides J., Schumacher E. H., Smith E. E., Lauber E. J., Awh E., Minoshima S., et al. (1997). Verbal working memory load affects regional brain activation as measured by PET. J. Cogn. Neurosci. 9 462–475. 10.1162/jocn.1997.9.4.462
    1. Kane M. J., Conway A. R. A., Miura T. K., Colflesh G. J. H. (2007). Working memory, attention control, and the N-back task: a question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 33 615–622. 10.1037/0278-7393.33.3.615
    1. Kane M. J., Engle R. W. (2002). The role of prefrontal cortex in working memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonom. Bull. Rev. 9 637–671. 10.3758/BF03196323
    1. Kane M. J., Engle R. W. (2003). Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. J. Exp. Psychol. Gen. 132 47–70. 10.1037/0096-3445.132.1.47
    1. Kane M. J., Hambrick D. Z., Conway A. R. (2005). Working memory capacity and fluid intelligence are strongly related constructs: comment on Ackermann, Beier, and Boyle (2005). Psychol. Bull. 131 66–71. 10.1037/0033-2909.131.1.66
    1. Kane M. J., Hambrick D. Z., Tuholski S. W., Wilhelm O., Payne T. W., Engle R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuo-spatial memory span and reasoning. J. Exp. Psychol. Gen. 133 189–217. 10.1037/0096-3445.133.2.189
    1. Karbach J., Verhaeghen P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25 2027–2037. 10.1177/0956797614548725
    1. Kessler Y., Oberauer K. (2014). Working memory updating latency reflects the cost of switching between maintenance and updating modes of operation. J. Exp. Psychol. Learn. Mem. Cogn. 40 738–754. 10.1037/a0035545
    1. Kessler Y., Oberauer K. (2015). Forward scanning in verbal working memory updating. Psychon. Bull. Rev. 22 1770–1776. 10.3758/s13423-015-0853-0
    1. Kirchner W. K. (1958). Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55 352–358. 10.1037/h0043688
    1. Kwong See S. T., Ryan E. B. (1995). Cognitive mediation of adult age differences in language performance. Psychol. Aging 10 458–468. 10.1037/0882-7974.10.3.458
    1. Kyllonen P. C., Christal R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence 14 389–433. 10.1016/S0160-2896(05)80012-1
    1. Lehrl S. (1995). Mehrfach-Wortwahl-Test (MWT). Erlangen: Medizinische Verlagsgesellschaft.
    1. Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24 167–202. 10.1146/annurev.neuro.24.1.167
    1. Miller K. M., Price K. K., Okun M. S., Montijo H., Bowers D. (2009). Is the N-back task a valid neurophysiological measure for assessing working memory? Arch. Clin. Neuropsychol. 24 711–717. 10.1093/arclin/acp063
    1. Missonnier P., Gold G., Leonards U., Costa-Fazio L., Michel J. P., Ibáñez V., et al. (2004). Aging and working memory: early deficits in EEG activation of posterior cortical areas. J. Neural Transm. 111 1141–1154. 10.1007/s00702-004-0159-2
    1. Miyake A. (2001). Individual differences in working memory: introduction to the special section. J. Exp. Psychol. Gen. 130 163–168. 10.1037/0096-3445.130.2.163
    1. Myers N. E., Stokes M. G., Nobre A. C. (2017). Prioritizing information during working memory: beyond sustained internal attention. Trends Cogn. Sci. 21 449–461. 10.1016/j.tics.2017.03.010
    1. Nairne J. S. (2002). Remembering over the short-term: the case against the standard model. Ann. Rev. Psychol. 53 53–81. 10.1146/annurev.psych.53.100901.135131
    1. Oberauer K. (2005). Binding and inhibition in working memory: individual and age differences in short-term recognition. J. Exp. Psychol.Gen. 134 368–387. 10.1037/0096-3445.134.3.368
    1. Oberauer K., Schulze R., Wilhelm O., Suss H. M. (2005). Working memory and intelligence – their correlation and their relation: comment on Ackerman, Beier, and Boyle (2005). Psychol. Bull. 131 61–65. 10.1037/0033-2909.131.1.61
    1. Oberauer K., Süß H.-M., Wilhelm O., Wittmann W. W. (2003). The multiple faces of working memory - storage, processing, supervision, and coordination. Intelligence 31 167–193. 10.1016/S0160-2896(02)00115-0
    1. O’Reilly R. C., Frank M. J. (2006). Making working memory work: a computational model of learning in the frontal cortex and basal ganglia. Neural Comput. 18 283–328. 10.1162/089976606775093909
    1. Oswald W. D., Fleischmann U. M. (1986). Nürnberger-Alters-Inventar NAI. Testkasten und Kurzmanual. Nürnberg: Universität Erlangen-Nürnberg.
    1. Owen A. M., McMillan K. M., Laird A. R., Bullmore E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25 46–59. 10.1002/hbm.20131
    1. Park D. C., Reuter-Lorenz P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60 173–196. 10.1146/annurev.psych.59.103006.093656
    1. Rac-Lubashevsky R., Kessler Y. (2016a). Decomposing the n-back task: an individual differences study using the reference-back paradigm. Neuropsychologia 90 190–199. 10.1016/j.neuropsychologia.2016.07.013
    1. Rac-Lubashevsky R., Kessler Y. (2016b). Dissociating working memory updating and automatic updating: the reference-back paradigm. J. Exp. Psychol. Learn. Mem. Cogn. 42 951–969. 10.1037/xlm0000219
    1. Rey-Mermet A., Gade M. (2017). Inhibition in aging: what is preserved? What declines? A meta-analysis. Psychon. Bull. Rev. 25 1695–1716. 10.3758/s13423-017-1384-7
    1. Rey-Mermet A., Gade M., Oberauer K. (2017). Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. J. Exp. Psychol. Learn. Mem. Cogn. 44 501–526. 10.1037/xlm0000450
    1. Roberts R., Gibson E. (2002). Individual differences in sentence memory. J. Psycholinguist. Res. 31 573–598. 10.1023/A:1021213004302
    1. Sala-Llonch R., Bartres-Faz D., Junque C. (2015). Reorganization of brain networks in aging: a review of functional connectivity studies. Front. Psychol. 6:663. 10.3389/fpsyg.2015.00663
    1. Salthouse T. A. (1991). Theoretical Perspectives and Cognitive Aging. Hillsdale, NJ: Lawrence Erlbaum.
    1. Salthouse T. A. (2000). Aging and measures of processing speed. Biol. Psychol. 54 35–54. 10.1016/S0301-0511(00)00052-1
    1. Salthouse T. A. (2015). “Individual differences in working memory and aging,” in Working Memory and Ageing, eds Logie R. H., Morris R. G. (New York, NY: Psychology Press; ), 1–20.
    1. Salthouse T. A., Pink J. E., Tucker-Drob E. M. (2008). Contextual analysis of fluid intelligence. Intelligence 36 464–486. 10.1016/j.intell.2007.10.003
    1. Schmidt M. (1996). Rey Auditory and Verbal Learning Test. A Handbook. Los Angeles, CA: Western Psychological Association.
    1. Schmiedek F., Lövdén M., Lindenberger U. (2014). A task is a task is a task: putting complex span, n-back, and other working memory indicators in psychometric context. Front. Psychol. 5:1475. 10.3389/fpsyg.2014.01475
    1. Shamosh N. A., DeYoung C. G., Green A. E., Reis D. L., Johnson M. R., Conway A. R., et al. (2008). Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychol Sci. 19 904–911. 10.1111/j.1467-9280.2008.02175.x
    1. Shelton J. T., Elliott E. M., Hill B. D., Calamia M. R., Gouvier W. D. (2009). A comparison of laboratory and clinical working memory tests and their prediction of fluid intelligence. Intelligence 37 283–293. 10.1016/j.intell.2008.11.005
    1. Shelton J. T., Metzger R. L., Elliott E. M. (2007). A group-administered lag task as a measure of working memory. Behav. Res. Meth. 39 482–493. 10.3758/BF03193017
    1. Turner G. R., Spreng R. N. (2012). Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiol. Aging 33 826.e1–826.e13. 10.1016/j.neurobiolaging.2011.06.005
    1. Turner M. L., Engle R. W. (1989). Is working memory capacity task dependent? J. Mem. Lang. 28 127–154. 10.1016/0749-596X(89)90040-5
    1. Unsworth N. (2010). On the division of working memory and long-term memory and their relation to intelligence: a latent variable analysis. Acta Psychol. 134 16–28. 10.1016/j.actpsy.2009.11.010
    1. Unsworth N., Engle R. W. (2007). On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychol. Bull. 133 1038–1066. 10.1037/0033-2909.133.6.1038
    1. Van der Linden M., Brédart S., Beerten A. (1994). Age-related differences in updating working memory. Br. J. Psychol. 85 145–152. 10.1111/j.2044-8295.1994.tb02514.x
    1. Van Leeuwen M., Van den Berg S. M., Hoekstra R. A., Boomsma D. I. (2007). Endophenotypes for intelligence in children and adolescents. Intelligence 35 369–380. 10.1016/j.intell.2006.09.008
    1. Verhaeghen P. (2011). Aging and executive control: reports of a demise greatly exaggerated. Curr. Dir. Psychol. Sci. 20 174–180. 10.1177/0963721411408772
    1. Verhaeghen P., Basak C. (2005). Aging and switching of the focus of attention in working memory: results from a modified N-Back task. Q. J. Exp. Psychol. A 58 134–154. 10.1080/02724980443000241
    1. Verhaeghen P. (ed.) (2014). “Age-related differences in the speed of executive control,” in The Elements of Cognitive Aging: Meta-Analyses of Age Related Differences in Processing Speed and their Consequences, (Oxford: Oxford University Press; ).
    1. Waiter G. D., Deary I. J., Staff R. T., Murray A. D., Fox H. C., Starr J. M., et al. (2009). Exploring possible neural mechanisms of intelligence differences using processing speed and working memory tasks: an fMRI study. Intelligence 37 199–206. 10.1016/j.intell.2008.09.008
    1. Wechsler D. (1956). Manual for the Wechsler Adult Intelligence Scale. New York, NY: Psychological Corporation.
    1. Welford A. T. (1980). “Memory and age: a perspective view,” in New Directions in Memory and Aging, eds Poon L. W., Fozard J. L., Cermak L., Arenberg D., Thompson L. W. (Hillsdale, NJ: Lawrence Erlbaum; ), 1–17.
    1. Wild-Wall N., Falkenstein M., Gajewski P. D. (2011). Age-related differences in working memory performance in a 2-back task. Front. Psychol. 2:186. 10.3389/fpsyg.2011.00186
    1. Wilhelm O., Hildebrandt A., Oberauer K. (2013). What is working memory capacity, and how can we measure it? Front. Psychol. 4:433. 10.3389/fpsyg.2013.00433

Source: PubMed

3
Abonnieren