Multiple-Ion Releasing Bioactive Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler: Innovative Technology for Dental Treatment and Care

Satoshi Imazato, Toshiyuki Nakatsuka, Haruaki Kitagawa, Jun-Ichi Sasaki, Satoshi Yamaguchi, Shuichi Ito, Hiroki Takeuchi, Ryota Nomura, Kazuhiko Nakano, Satoshi Imazato, Toshiyuki Nakatsuka, Haruaki Kitagawa, Jun-Ichi Sasaki, Satoshi Yamaguchi, Shuichi Ito, Hiroki Takeuchi, Ryota Nomura, Kazuhiko Nakano

Abstract

Surface Pre-Reacted Glass-ionomer (S-PRG) filler, which releases strontium (Sr2+), borate (BO33-), fluoride (F-), sodium (Na+), silicate (SiO32-), and aluminum (Al3+) ions at high concentrations, is a unique glass filler that are utilized in dentistry. Because of its multiple-ion releasing characteristics, S-PRG filler exhibits several bioactivities such as tooth strengthening, acid neutralization, promotion of mineralization, inhibition of bacteria and fungi, inhibition of matrix metalloproteinases, and enhancement of cell activity. Therefore, S-PRG filler per se and S-PRG filler-containing materials have the potential to be beneficial for various dental treatments and care. Those include restorative treatment, caries prevention/management, vital pulp therapy, endodontic treatment, prevention/treatment of periodontal disease, prevention of denture stomatitis, and perforation repair/root end filling. This review summarizes bioactive functions exhibited by S-PRG filler and its possible contribution to oral health.

Keywords: S-PRG; bioactive; dental; glass filler; ion release; prevention.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Surface Pre-Reacted Glass-ionomer (S-PRG) filler. (A) S-PRG filler is composed of three layers: outer SiO2 coating layer, pre-reacted glass-ionomer phase, and inner functional glass core. (B) S-PRG filler releases multiple ions: strontium (Sr2+), borate (BO33−), fluoride (F−), sodium (Na+), silicate (SiO32−), and aluminum (Al3+) ions.
Figure 2
Figure 2
Comparison of ion release from S-PRG filler and conventional glass-ionomer filler. Release of ions from S-PRG filler or unreacted filler of conventional glass-ionomer cement was determined after stirring for 24 h in distilled water (mixing ratio of 1:1). The concentration of fluoride ions in the eluate was measured using a fluoride ion electrode, and those of other ions were measured using an inductively coupled plasma atomic emission spectrometer.
Figure 3
Figure 3
Mineral induction by eluate of S-PRG filler-containing adhesive. (A) Globular deposit formed in the presence of eluate of S-PRG filler-containing adhesive (Shake One). (B) Control. The eluate of S-PRG filler-containing adhesive promoted mineral formation on phosvitin-immobilized agarose beads placed in mineralizing solution consisting of 2.24 mM CaCl2, 1.34 mM KPO4, 150 mM KCl, and 10 mM Hepes at pH 7.4.
Figure 4
Figure 4
Inhibition of S. mutans glucan synthesis by S-PRG filler eluate. S. mutans MT8148 (1.0 × 107 CFU/mL) was incubated for 18 h at 37 °C with the addition of 1% sucrose without (left) or with (right) the 25% S-PRG filler eluate. Arrow: S. mutans cell, Arrowhead: glucan formed.
Figure 5
Figure 5
Inhibition of biofilm formation by S-PRG filler eluate. S. mutans NCTC10449 suspension supplemented with 1% sucrose was incubated for 24 h without (left) or with the 20% S-PRG filler eluate (right). In the presence of the 20% S-PRG filler eluate, S. mutans biofilm formation was inhibited.
Figure 6
Figure 6
Inhibitory effects of S. mutans biofilm formation on resin composites containing S-PRG filler. Reproduced with permission from Imazato et al. [4]. Copyright: Japanese Society for Dental Materials and Devices.
Figure 7
Figure 7
Plaque accumulated on resin composites after placement in a human mouth for 24 h. Reproduced with permission from Imazato et al. [4]. Copyright: Japanese Society for Dental Materials and Devices.
Figure 8
Figure 8
Recovery of migration activity in epithelial cells by S-PRG filler eluate. Human gingival epithelial cells were infected with P. gingivalis, and their migration was assessed after 24 h of culture. (A) Before culture, (B) after culture without P. gingivalis infection, (C) after culture with P. gingivalis infection, and (D) after culture with P. gingivalis infection and 1% S-PRG filler eluate.
Figure 9
Figure 9
Proliferation of osteoblastic cells on the material surface. (A) Experimental S-PRG cement, (B) calcium silicate-based cement (ProRoot MTA), (C) reinforced zinc oxide cement, and (D) glass-ionomer cement. MC3T3-E1 cells were seeded on the set specimen and cultured for 24 h.
Figure 10
Figure 10
Ion release profile of commercially available S-PRG filler-containing restorative materials. Cumulative concentrations of ions released from (A) resin composites (Beautifil II), (B) flowable-type resin composites (Beautifil Flow Plus), (C) resin cement for luting (ResiCem EX), and (D) bonding agent in a two-step self-etch adhesive (FL-Bond II). The disc-shaped cured specimen (15 mm diameter, 1 mm thickness) was immersed in 5 mL of distilled water, which was replaced periodically. The concentration of fluoride ions in the eluate was measured using a fluoride ion electrode, and those of other ions were measured using an inductively coupled plasma atomic emission spectrometer.
Figure 11
Figure 11
Ion release profile of coating resin containing S-PRG filler. Cumulative concentrations of ions released from commercial coating resin containing S-PRG filler (PRG Barrier Coat). The disc-shaped cured specimen (15 mm diameter, 1 mm thickness) was immersed in 5 mL of distilled water, which was replaced periodically. The concentration of fluoride ions in the eluate was measured using a fluoride ion electrode, and those of other ions were measured using an inductively coupled plasma atomic emission spectrometer.

References

    1. Imazato S. Bio-active restorative materials with antibacterial effects: New dimension of innovation in restorative dentistry. Dent. Mater. J. 2009;28:11–19. doi: 10.4012/dmj.28.11.
    1. Imazato S., Ma S., Chen J.H., Xu H.H. Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dent. Mater. 2014;30:97–104. doi: 10.1016/j.dental.2013.06.003.
    1. Imazato S., Kitagawa H., Tsuboi R., Kitagawa R., Thongthai P., Sasaki J.I. Non-biodegradable polymer particles for drug delivery: A new technology for “bio-active” restorative materials. Dent. Mater. J. 2017;36:524–532. doi: 10.4012/dmj.2017-156.
    1. Imazato S., Kohno T., Tsuboi R., Thongthai P., Xu H.H., Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent. Mater. J. 2020;39:69–79. doi: 10.4012/dmj.2019-350.
    1. Imazato S., Kitagawa H. Dental resin-based materials with antibacterial properties: Contact inhibition and controlled release. In: Ionescu A.C., Hahnel S., editors. Oral Biofilms and Modern Dental Materials: Advances toward Bioactivity. Springer; Cham, Switzerland: 2021. pp. 127–140.
    1. Spagnuolo G. Bioactive dental materials: The current status. Materials. 2022;15:2016. doi: 10.3390/ma15062016.
    1. Schmalz G., Hickel R., Price R.B., Platt J.A. Bioactivity of dental restorative materials: FDI Policy Statement. Int. Dent. J. 2023;73:21–27. doi: 10.1016/j.identj.2022.11.012.
    1. Ito S., Iijima M., Hashimoto M., Tsukamoto N., Mizoguchi I., Saito T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J. Dent. 2011;39:72–79. doi: 10.1016/j.jdent.2010.10.011.
    1. Uo M., Wada T., Asakura K. Structural analysis of strontium in human teeth treated with surface pre-reacted glass-ionomer filler eluate by using extended X-ray absorption fine structure analysis. Dent. Mater. J. 2017;36:214–221. doi: 10.4012/dmj.2016-266.
    1. Ogawa A., Wada T., Mori Y., Uo M. Time dependence of multi-ion absorption into human enamel from surface prereacted glass-ionomer (S-PRG) filler eluate. Dent. Mater. J. 2019;38:707–712. doi: 10.4012/dmj.2018-314.
    1. Dedhiya M.G., Young F., Higuchi W.I. Mechanism for the retardation of the acid dissolution rate of hydroxyapatite by strontium. J. Dent. Res. 1973;52:1097–1109. doi: 10.1177/00220345730520051901.
    1. Featherstone J.D.B., Shields C.P., Khademazad B., Oldershaw M.D. Acid reactivity of carbonated apatites with strontium and fluoride substitutions. J. Dent. Res. 1983;62:1049–1053. doi: 10.1177/00220345830620100801.
    1. Hiraishi N., Sayed M., Hill R., Tagami J., Hayashi F. Interactions of boron released from surface pre-reacted glass ionomer with enamel/dentin and its effect on pH. Sci. Rep. 2021;11:15734. doi: 10.1038/s41598-021-95279-x.
    1. Fujimoto Y., Iwasa M., Murayama R., Miyazaki M., Nagafuji A., Nakatsuka T. Detection of ions released from S-PRG fillers and their modulation effect. Dent. Mater. J. 2010;29:392–397. doi: 10.4012/dmj.2010-015.
    1. Nemoto A., Chosa N., Kyakumoto S., Yokota S., Kamo M., Noda M., Ishisaki A. Water-soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells. Mol. Med. Rep. 2018;17:3448–3454. doi: 10.3892/mmr.2017.8287.
    1. Ishigure H., Kawaki H., Shintani K., Ueno K., Mizuno-Kamiya M., Takayama E., Hotta M., Kondoh N., Nikaido T. Effects of multi-components released from S-PRG filler on the activities of human dental pulp-derived stem cells. Dent. Mater. J. 2021;40:1329–1337. doi: 10.4012/dmj.2020-390.
    1. Yoneda M., Suzuki N., Hirofuji T. Antibacterial effect of surface pre-reacted glass ionomer filler and eluate–mini review. Pharm. Anal. Acta. 2015;6:349.
    1. Nomura R., Morita Y., Matayoshi S., Nakano K. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans. Sci. Rep. 2018;8:5056. doi: 10.1038/s41598-018-23354-x.
    1. Miki S., Kitagawa H., Kitagawa R., Kiba W., Hayashi M., Imazato S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent. Mater. 2016;32:1095–1102. doi: 10.1016/j.dental.2016.06.018.
    1. Kitagawa H., Miki-Oka S., Mayanagi G., Abiko Y., Takahashi N., Imazato S. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J. Dent. 2018;70:92–96. doi: 10.1016/j.jdent.2017.12.017.
    1. Kono Y., Tamura M., Cueno M.E., Tonogi M., Imai K. S-PRG filler eluate induces oxidative stress in oral microorganism: Suppression of growth and pathogenicity, and possible clinical application. Antibiotics. 2021;10:816. doi: 10.3390/antibiotics10070816.
    1. Yoneda M., Suzuki N., Masuo Y., Fujimoto A., Iha K., Yamada K., Iwamoto T., Hirofuji T. Effect of S-PRG eluate on biofilm formation and enzyme activity of oral bacteria. Int. J. Dent. 2012;2012:814913. doi: 10.1155/2012/814913.
    1. Tamura M., Cueno M.E., Abe K., Kamio N., Ochiai K., Imai K. Ions released from a S-PRG filler induces oxidative stress in Candida albicans inhibiting its growth and pathogenicity. Cell Stress Chaperones. 2018;23:1337–1343. doi: 10.1007/s12192-018-0922-1.
    1. Mendes Soares I.P., Anselmi C., Guiné I., Fernandes L.O., Pires M.L.B.A., de Souza Costa C.A., Scheffel D.L.S., Hebling J. Inhibitory activity of S-PRG filler on collagen-bound MMPs and dentin matrix degradation. J. Dent. 2022;124:104237. doi: 10.1016/j.jdent.2022.104237.
    1. Salim I., Seseogullari-Dirihan R., Imazato S., Tezvergil-Mutluay A. The inhibitory effects of various ions released from S-PRG fillers on dentin protease activity. Dent. Mater. J. 2023;42:99–104. doi: 10.4012/dmj.2022-141.
    1. Yamaguchi-Ueda K., Akazawa Y., Kawarabayashi K., Sugimoto A., Nakagawa H., Miyazaki A., Kurogoushi R., Iwata K., Kitamura T., Yamada A., et al. Combination of ions promotes cell migration via extracellular signal-regulated kinase 1/2 signaling pathway in human gingival fibroblasts. Mol. Med. Rep. 2019;19:5039–5045. doi: 10.3892/mmr.2019.10141.
    1. Takeuchi H., Kato Y., Sasaki N., Tanigaki K., Yamaga S., Mita E., Kuboniwa M., Matsusaki M., Amano A. Surface pre-reacted glass-ionomer eluate protects gingival epithelium from penetration by lipopolysaccharides and peptidoglycans via transcription factor EB pathway. PLoS ONE. 2022;17:e0271192. doi: 10.1371/journal.pone.0271192.
    1. Naoum S., Ellakwa A., Martin F., Swain M. Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites. Oper. Dent. 2011;36:422–432. doi: 10.2341/10-414-L.
    1. Saku S., Kotake H., Scougall-vilchis R.J., Ohashi S., Hotta M., Yamamoto K. Antibacterial activity of composite resin with glass-ionomer filler particles. Dent. Mater. J. 2010;29:193–198. doi: 10.4012/dmj.2009-050.
    1. Zhou Y., Hiraishi N., Shimada Y., Wang G., Tagami J., Feng X. Evaluation of tooth demineralization and interfacial bacterial penetration around resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent. Mater. 2021;37:849–862. doi: 10.1016/j.dental.2021.02.009.
    1. Lai Y.J., Takahashi R., Lin P.Y., Kuo L., Zhou Y., Matin K., Chiang Y.C., Shimada Y., Tagami J. Anti-demineralization effects of dental adhesive-composites on enamel-root dentin junction. Polymers. 2021;13:3327. doi: 10.3390/polym13193327.
    1. Bourbia M., Ma D., Cvitkovitch D.G., Santerre J.P., Finer Y. Cariogenic bacteria degrade dental resin composites and adhesives. J. Dent. Res. 2013;92:989–994. doi: 10.1177/0022034513504436.
    1. Gautam A.K., Thakur R., Shashikiran N.D., Shilpy S., Agarwal N., Tiwari S. Degradation of resin restorative materials by Streptococcus mutans: A pilot study. J. Clin. Pediatr. Dent. 2017;41:225–227. doi: 10.17796/1053-4628-41.3.225.
    1. Yoshihara K., Nagaoka N., Maruo Y., Sano H., Yoshida Y., Van Meerbeek B. Bacterial adhesion not inhibited by ion-releasing bioactive glass filler. Dent. Mater. 2017;33:723–734. doi: 10.1016/j.dental.2017.04.002.
    1. Ozer F., Patel R., Yip J., Yakymiv O., Saleh N., Blatz M.B. Five-year clinical performance of two fluoride-releasing giomer resin materials in occlusal restorations. J. Esthet. Restor. Dent. 2022;34:1213–1220. doi: 10.1111/jerd.12948.
    1. Toz-Akalin T., Öztürk-Bozkurt F., Kusdemir M., Özsoy A., Yüzbaşıoğlu E., Özcan M. Clinical evaluation of low-shrinkage bioactive material giomer versus nanohybrid resin composite restorations: A two-year prospective controlled clinical trial. Oper. Dent. 2023;48:10–20. doi: 10.2341/21-155-C.
    1. Nakase Y., Yamaguchi S., Okawa R., Nakano K., Kitagawa H., Imazato S. Physical properties and wear behavior of CAD/CAM resin composite blocks containing S-PRG filler for restoring primary molar teeth. Dent. Mater. 2022;38:158–168. doi: 10.1016/j.dental.2021.11.001.
    1. Akimoto N., Sakamoto T., Kubota Y., Kondo Y., Momoi Y. A novel composite-to-composite adhesive bond mechanism. Dent. Mater. J. 2011;30:523–527. doi: 10.4012/dmj.2011-011.
    1. Han L., Okamoto A., Fukushima M., Okiji T. Evaluation of a new fluoride-releasing one-step adhesive. Dent. Mater. J. 2006;25:509–515. doi: 10.4012/dmj.25.509.
    1. Han L., Okiji T. Evaluation of the ions release / incorporation of the prototype S-PRG filler-containing endodontic sealer. Dent. Mater. J. 2011;30:898–903. doi: 10.4012/dmj.2011-101.
    1. Horiuchi S., Kaneko K., Mori H., Kawakami E., Tsukahara T., Yamamoto K., Hamada K., Asaoka K., Tanaka E. Enamel bonding of self-etching and phosphoric acid-etching orthodontic adhesives in simulated clinical conditions: Debonding force and enamel surface. Dent. Mater. J. 2009;28:419–425. doi: 10.4012/dmj.28.419.
    1. Kaga M., Kakuda S., Ida Y., Toshima H., Hashimoto M., Endo K., Sano H. Inhibition of enamel demineralization by buffering effect of S-PRG filler-containing dental sealant. Eur. J. Oral Sci. 2014;122:78–83. doi: 10.1111/eos.12107.
    1. Ma S., Imazato S., Chen J.-H., Mayanagi G., Takahashi N., Ishimoto T., Nakano T. Effects of a coating resin containing S-PRG filler to prevent demineralization of root surfaces. Dent. Mater. J. 2012;31:909–915. doi: 10.4012/dmj.2012-061.
    1. Kawasaki K., Kambara M. Effects of ion-releasing tooth-coating material on demineralization of bovine tooth enamel. Int. J. Dent. 2014;2014:463149. doi: 10.1155/2014/463149.
    1. Shiiya T., Mukai Y., Tomiyama K., Teranaka T. Anti-demineralization effect of a novel fluoride-releasing varnish on dentin. Am. J. Dent. 2012;25:347–350.
    1. Mukai Y., Kamijo K., Fujino F., Hirata Y., Teranaka T., Ten Cate J.M. Effect of denture base-resin with prereacted glass-ionomer filler on dentin demineralization. Eur. J. Oral Sci. 2009;117:750–754. doi: 10.1111/j.1600-0722.2009.00678.x.
    1. Murayama R., Nagura Y., Yamauchi K., Moritake N., Iino M., Ishii R., Kurokawa H., Miyazaki M., Hosoya Y. Effect of a coating material containing surface reaction-type pre-reacted glass-ionomer filler on prevention of primary enamel demineralization detected by optical coherence tomography. J. Oral Sci. 2018;60:367–373. doi: 10.2334/josnusd.17-0256.
    1. Funato Y., Matsuda Y., Okuyama K., Yamamoto H., Komatsu H., Sano H. A new technique for analyzing trace element uptake by human enamel. Dent. Mater. J. 2015;34:240–245. doi: 10.4012/dmj.2014-127.
    1. Hirayama K., Hanada T., Hino R., Saito K., Kobayashi M., Arakaki M. Material properties on enamel and fissure of surface pre-reacted glass-ionomer filler-containing dental sealant. Pediatr. Dent. J. 2018;28:87–95. doi: 10.1016/j.pdj.2018.05.001.
    1. Wang Y., Kaga M., Kajiwara D., Minamikawa H., Kakuda S., Hashimoto M., Yawaka Y. Ion release and buffering capacity of S-PRG filler-containing pit and fissure sealant in lactic acid. Nano Biomed. 2011;3:275–281.
    1. Patil S.S., Kontham U.R., Kontham R.K., Patil S.S., Kamble S.P. Fluoride release and fluoride-recharging ability of three different sealants. J. Indian Soc. Pedod. Prev. Dent. 2020;38:247–252.
    1. Hirayama N., Karaki T., Onaga M., Usuba R., Idaira Y., Asada Y. Comparisons of retention rate and caries preventive effect between sealant containing S-PRG filler and resin-based sealant in children. Jpn. J. Pediatr. Dent. 2019;57:54–65. (In Japanese)
    1. Penha K.J.S., Roma F.R.V.O., Filho E.M.M., Ribeiro C.C.C., Firoozmand L.M. Bioactive self-etching sealant on newly erupted molars: A split-mouth clinical trial. J. Dent. 2021;115:103857. doi: 10.1016/j.jdent.2021.103857.
    1. Iijima M., Kawaguchi K., Kawamura N., Ito S., Saito T., Mizoguchi I. The effects of single application of pastes containing ion-releasing particles on enamel demineralization. Dent. Mater. J. 2017;36:461–468. doi: 10.4012/dmj.2016-307.
    1. Iijima M., Ishikawa R., Kawaguchi K., Ito S., Saito T., Mizoguchi I. Effects of pastes containing ion-releasing particles on dentin remineralization. Dent. Mater. J. 2019;38:271–277. doi: 10.4012/dmj.2018-015.
    1. Okuwaki T., Sugimura R., Kurokawa H., Tsujimoto A., Takamizawa T., Miyazaki M., Garcia-Godoy F. Effect of ion-releasing filler-containing gel application on dentin remineralization using optical coherent tomography. Am. J. Dent. 2021;34:286–292.
    1. Amaechi B.T., Kasundra H., Joshi D., Abdollahi A., Azees P.A.A., Okoye L.O. Effectiveness of S-PRG filler-containing toothpaste in inhibiting demineralization of human tooth surface. Open Dent. J. 2018;12:811–819. doi: 10.2174/1874210601812010811.
    1. Amaechi B.T., Key M.C., Balu S., Okoye L.O., Gakunga P.T. Evaluation of the caries-preventive effect of toothpaste containing surface prereacted glass-ionomer filler. J. Investig. Clin. Dent. 2017;8:e12249. doi: 10.1111/jicd.12249.
    1. Vertuan M., França da Silva J., Ferreira A.M., Braga A.S., Magalhães A.C. Effect of a toothpaste containing surface pre-reacted glass-ionomer filler on the remineralization of artificial carious enamel lesions in situ. Caries Res. 2022;56:447–454. doi: 10.1159/000527388.
    1. Moecke S.E., Silva A.G.C.S., Andrade A.C.M., Borges A.B., Torres C.R.G. Efficacy of S-PRG filler varnishes on enamel caries remineralization. J. Dent. 2022;119:104074. doi: 10.1016/j.jdent.2022.104074.
    1. Kawashima S., Shinkai K., Suzuki M. The effect of multi-ion releasing filler contents on the dentin bond strength of an adhesive resin developed for direct pulp-capping. Dent. Mater. J. 2015;34:841–846. doi: 10.4012/dmj.2015-057.
    1. Kawashima S., Shinkai K., Suzuki M. Effect of an experimental adhesive resin containing multi-ion releasing fillers on direct pulp-capping. Dent. Mater. J. 2016;35:479–489. doi: 10.4012/dmj.2015-381.
    1. Sato F., Suzuki M., Shinkai K. Pulp tissue reaction to a self-adhesive, resin-based direct pulp capping material containing surface pre-reacted glass-ionomer filler. Dent. Mater. 2021;37:972–982. doi: 10.1016/j.dental.2021.02.014.
    1. Takahashi Y., Okamoto M., Komichi S., Imazato S., Nakatsuka T., Sakamoto S., Kimoto K., Hayashi M. Application of a direct pulp capping cement containing S-PRG filler. Clin. Oral Investig. 2019;23:1723–1731. doi: 10.1007/s00784-018-2596-6.
    1. Okamoto M., Ali M., Komichi S., Watanabe M., Huang H., Ito Y., Miura J., Hirose Y., Mizuhira M., Takahashi Y., et al. Surface pre-reacted glass filler contributes to tertiary dentin formation through a mechanism different than that of hydraulic calcium-silicate cement. J. Clin. Med. 2019;8:1440. doi: 10.3390/jcm8091440.
    1. Li L., Peng X., Qin Y., Wang R., Tang J., Cui X., Wang T., Liu W., Pan H., Li B. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis. Sci. Rep. 2017;24:45204. doi: 10.1038/srep45204.
    1. Ali M., Okamoto M., Komichi S., Watanabe M., Huang H., Takahashi Y., Hayashi M. Lithium-containing surface pre-reacted glass fillers enhance hDPSC functions and induce reparative dentin formation in a rat pulp capping model through activation of Wnt/β-catenin signaling. Acta Biomater. 2019;96:594–604. doi: 10.1016/j.actbio.2019.06.016.
    1. Ali M., Okamoto M., Watanabe M., Huang H., Matsumoto S., Komichi S., Takahashi Y., Hayashi M. Biological properties of lithium-containing surface pre-reacted glass fillers as direct pulp-capping cements. Dent. Mater. 2022;38:294–308. doi: 10.1016/j.dental.2021.12.011.
    1. Yassen G.H., Huang R., Al-Zain A., Yoshida T., Gregory R.L., Platt J.A. Evaluation of selected properties of a new root repair cement containing surface pre-reacted glass ionomer fillers. Clin. Oral Investig. 2016;20:2139–2148. doi: 10.1007/s00784-016-1715-5.
    1. Miyaji H., Mayumi K., Miyata S., Nishida E., Shitomi K., Hamamoto A., Tanaka S., Akasaka T. Comparative biological assessments of endodontic root canal sealer containing surface pre-reacted glass-ionomer (S-PRG) filler or silica filler. Dent. Mater. J. 2020;39:287–294. doi: 10.4012/dmj.2019-029.
    1. Thein H.S.S., Hashimoto K., Kawashima N., Noda S., Okiji T. Evaluation of the anti-inflammatory effects of surface-reaction-type pre-reacted glass-ionomer filler containing root canal sealer in lipopolysaccharide-stimulated RAW264.7 macrophages. Dent. Mater. J. 2022;41:150–158. doi: 10.4012/dmj.2021-139.
    1. Hirata-Tsuchiya S., Suzuki S., Nakamoto T., Kakimoto N., Yamada S., Shiba H. Surgical sealing of laterally localized accessory root canal with resin containing S-PRG filler in combination with non-surgical endodontic treatment: A case report. Dent. J. 2020;8:131. doi: 10.3390/dj8040131.
    1. Xiong B., Shirai K., Matsumoto K., Abiko Y., Furuichi Y. The potential of a surface pre-reacted glass root canal dressing for treating apical periodontitis in rats. Int. Endod. J. 2021;54:255–267. doi: 10.1111/iej.13414.
    1. Iwamatsu-Kobayashi Y., Abe S., Fujieda Y., Orimoto A., Kanehira M., Handa K., Venkataiah V.S., Zou W., Ishikawa M., Saito M. Metal ions from S-PRG filler have the potential to prevent periodontal disease. Clin. Exp. Dent. Res. 2017;3:126–133. doi: 10.1002/cre2.70.
    1. Mayumi K., Miyaji H., Miyata S., Nishida E., Furihata T., Kanemoto Y., Sugaya T., Shitomi K., Akasaka T. Antibacterial coating of tooth surface with ion-releasing pre-reacted glass-ionomer (S-PRG) nanofillers. Heliyon. 2021;7:e06147. doi: 10.1016/j.heliyon.2021.e06147.
    1. Miyaji H., Mayumi K., Kanemoto Y., Okamoto I., Hamamoto A., Kato A., Sugaya T., Akasaka T., Tanaka S. Ultrasonic irrigation of periodontal pocket with surface pre-reacted glass-ionomer (S-PRG) nanofiller dispersion improves periodontal parameters in beagle dogs. J. Oral Biosci. 2022;64:222–228. doi: 10.1016/j.job.2022.02.006.
    1. Sudbery P., Gow N., Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12:317–324. doi: 10.1016/j.tim.2004.05.008.
    1. Tsutsumi C., Takakuda K., Wakabayashi N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J. Dent. 2016;44:37–43. doi: 10.1016/j.jdent.2015.11.010.
    1. Takakusaki K., Fueki K., Tsutsumi C., Tsutsumi Y., Iwasaki N., Hanawa T., Takahashi H., Takakuda K., Wakabayashi N. Effect of incorporation of surface pre-reacted glass ionomer filler in tissue conditioner on the inhibition of Candida albicans adhesion. Dent. Mater. J. 2018;37:453–459. doi: 10.4012/dmj.2017-171.
    1. Tonprasong W., Inokoshi M., Tamura M., Uo M., Wada T., Takahashi R., Hatano K., Shimizubata M., Minakuchi S. Tissue conditioner incorporating a nano-sized surface pre-reacted glass-ionomer (S-PRG) filler. Materials. 2021;14:6648. doi: 10.3390/ma14216648.
    1. Hatano K., Inokoshi M., Tamura M., Uo M., Shimizubata M., Tonprasong W., Wada T., Takahashi R., Imai K., Minakuchi S. Novel antimicrobial denture adhesive containing S-PRG filler. Dent. Mater. J. 2021;40:1365–1372. doi: 10.4012/dmj.2020-443.

Source: PubMed

3
Abonnieren