Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes

Weijian Hang, Chen Chen, John M Seubert, Dao Wen Wang, Weijian Hang, Chen Chen, John M Seubert, Dao Wen Wang

Abstract

Fulminant myocarditis (FM) is characterized by a rapid progressive decline in cardiac function and a high mortality rate. Since the first report of FM patients in the 1980s, several clinical trials and research studies have been published increasing our knowledge regarding FM. Currently, the diagnosis of FM depends on various techniques including electrocardiography, echocardiography, endomyocardial biopsy, and cardiac magnetic resonance. The development of mechanical circulation support (MCS) devices and progress in our understanding of the pathophysiological mechanisms underlying FM, treatment regimens have evolved from simple symptomatic treatment to a life support-based comprehensive treatment approach. The core mechanism underlying the development of FM is the occurrence of an inflammatory cytokine storm. This review provides a comprehensive account of the current understanding of FM pathophysiology and knowledge regarding its etiology, pathophysiology, treatments, and outcomes.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Different pathological phenotype of FM. ac representative HE staining of EMB samples of FM patients showed lymphocyte FM (a), eosinophilic FM (b), and giant cell FM (c). df IHC staining showed massive T lymphocyte (CD45RO) infiltrated into myocardium (d). Macrophage (CD68) can also be observed (e). Few B lymphocyte (CD20) can be seen in EMB samples (b). Figure 1d–f is from ref. with the permission of Circulation Journal; Fig. 1b is from ref. with the permission of ESC Heart Failure; Fig. 1c is from ref. with the permission of BMJ Case Report
Fig. 2
Fig. 2
Cytokine storm of FM patients. Changed cytokines and their cellular origination. After scanning for changed cytokines, their immune cellular origin was searched using the Human Protein Atlas database (http://www.proteinatlas.org). Neutrophils and monocytes accounted for the majority of elevated cytokines and the majority of known immune cells participated in the dysregulation of cytokine profile
Fig. 3
Fig. 3
Illustration of signaling transduction in the development of a cytokine storm in FM and potential cardiac effects. Various etiologies trigger inflammatory signaling that result in transcription and translation of pro-inflammatory cytokines. Secreted cytokines activate numerous pathways via specific receptors leading to different cellular responses. Pathogens (e.g., viruses) can directly target cells resulting in marked damage worsening the prognosis of FM patients
Fig. 4
Fig. 4
Representative echocardiography and CMR assessment images of clinical FM patients. a regional strain distribution of FM patients on the day of admission, the fifth day and tenth day of hospitalization. Note the regional strain distribution improved following appropriate treatment under the guidance of life support-based comprehensive treatment regimen. b Representative CMR image of FM patients. T2WI showed left ventricular hypertrophy and massive left ventricular wall edema (red arrow) in a 37-year-old FM female patient. The middle section of apex and left ventricular wall showed late gadolinium enhancement (LGE) signal (white arrow), which indicates massive myocardial injuries. c, d Representative CMR image of a FM patient (c) and a non-fulminant myocarditis patient (d). Note the increased diffuse LGE pattern of FM compared to non-FM patient. Longer native T1 and T2 and higher extracellular volume fraction (ECV) were observed in FM patients. Figures 4c and d is from ref. with the permission of the Journal of Magnetic Resonance Imaging
Fig. 5
Fig. 5
The prognosis of FM patients. a The 60-day follow-up and b long-term (7 years) follow-up of FM patients in the work of Ammirati. These two figures are of the permission of the Journal of the American College of Cardiology. c The cumulative non-heart failure rate curve of 105 patients who were treated at Tongji hospital between January 2015 and August 2019. These patients were diagnosed as acute myocarditis (n = 54) or fulminant myocarditis (n = 51). The primary endpoint was cardiac death or heart transplantation, and the secondary endpoint was left ventricular dysfunction evidenced by ejection fraction <55% during study follow-up. The Kaplan–Meier method was used to operate the survival curve. The heart failure rate of FM patients was significantly different from that of patients with acute myocarditis (Log rank = 0.009)
Fig. 6
Fig. 6
Illustration of different regimens to FM. The age of drug therapy (a), the age of MCS therapy (b), and the age of comprehensive therapy (c) carry out different interference methods. The red line represents cytokine level while the red dot line represents possible cytokine level. The blue line represents heart function, and the blue dot line represents possible future heart function manifestations. Note that heart function may deteriorate and lead to death (purple dot line)
Fig. 7
Fig. 7
Illustration of the relationship of cytokine storm and immunomodulation. The cytokine storm does not necessarily equal to the elevation of absolute quantification of certain cytokine, but is more likely to be the disturbance of immunohomeostasis. The effect of immunomodulation is to restore immunohomeostasis and calm down overreacted immune response
Fig. 8
Fig. 8
Flow chart of treating FM under the guidance of “life support-based comprehensive treatment regimen”

References

    1. Ammirati E, et al. Acute and fulminant myocarditis: a pragmatic clinical approach to diagnosis and treatment. Curr. Cardiol. Rep. 2018;20:114–26.. doi: 10.1007/s11886-018-1054-z.
    1. Maisch B, Ruppert V, Pankuweit S. Management of fulminant myocarditis: a diagnosis in search of its etiology but with therapeutic options. Curr. Heart Fail Rep. 2014;11:166–177. doi: 10.1007/s11897-014-0196-6.
    1. Saraiya N, Singh S, Corpuz M. Fatal influenza myocarditis with incessant ventricular tachycardia. BMJ Case Rep. 2019;12:e228201–e228203. doi: 10.1136/bcr-2018-228201.
    1. Wang D, et al. Chinese society of cardiology expert consensus statement on the diagnosis and treatment of adult fulminant myocarditis. Sci. China Life Sci. 2018;62:187–202. doi: 10.1007/s11427-018-9385-3.
    1. Caforio AL, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013;34:2636–2648. doi: 10.1093/eurheartj/eht210.
    1. Ting M, et al. Heart transplantation under mechanical circulatory support for acute fulminant myocarditis with cardiogenic shock: 10 years’ experience of a single center. Transpl. Proc. 2016;48:951–955. doi: 10.1016/j.transproceed.2015.12.109.
    1. Schubert S, et al. Severe heart failure and the need for mechanical circulatory support and heart transplantation in pediatric patients with myocarditis: results from the prospective multicenter registry “MYKKE”. Pediatr. Transpl. 2019;23:e13548–e13558. doi: 10.1111/petr.13548.
    1. Li S, et al. A life support-based comprehensive treatment regimen dramatically lowers the in-hospital mortality of patients with fulminant myocarditis: a multiple center study. Sci. China Life Sci. 2019;62:369–380. doi: 10.1007/s11427-018-9501-9.
    1. Mahfoud F, et al. Virus serology in patients with suspected myocarditis: utility or futility? Eur. Heart J. 2011;32:897–903. doi: 10.1093/eurheartj/ehq493.
    1. Merlo M, et al. Persistent left ventricular dysfunction after acute lymphocytic myocarditis: frequency and predictors. PLoS ONE. 2019;14:e0214616–e0214628. doi: 10.1371/journal.pone.0214616.
    1. Awadalla M, et al. Global longitudinal strain and cardiac events in patients with immune checkpoint inhibitor-related myocarditis. J. Am. Coll. Cardiol. 2020;75:467–478. doi: 10.1016/j.jacc.2019.11.049.
    1. Maisch B, Alter P. Treatment options in myocarditis and inflammatory cardiomyopathy: Focus on i.v. immunoglobulins. Herz. 2018;43:423–430. doi: 10.1007/s00059-018-4719-x.
    1. Yuan W, et al. Development of a TaqMan-based real-time reverse transcription polymerase chain reaction assay for the detection of encephalomyocarditis virus. J. Virol. Methods. 2014;207:60–65. doi: 10.1016/j.jviromet.2014.06.004.
    1. Brucato A, et al. Fulminant myocarditis during HIV seroconversion: recovery with temporary left ventricular mechanical assistance. Ital. Heart J. 2004;5:228–231.
    1. Bowles NE, et al. Detection of viruses in myocardial tissues by polymerase chain reaction: evidence of adenovirus as a common cause of myocarditis in children and adults. J. Am. Coll. Cardiol. 2003;42:466–472. doi: 10.1016/S0735-1097(03)00648-X.
    1. Jeserich M, et al. Diagnosis of viral myocarditis by cardiac magnetic resonance and viral genome detection in peripheral blood. Int J. Cardiovasc. Imaging. 2013;29:121–129. doi: 10.1007/s10554-012-0052-2.
    1. Harutaka K, et al. A novel real-time PCR system for simultaneous detection of human viruses in clinical samples from patients with uncertain diagnoses. J. Med. Virol. 2011;83:322–330. doi: 10.1002/jmv.21962.
    1. Takeuchi S, et al. Identification of potential pathogenic viruses in patients with acute myocarditis using next-generation sequencing. J. Med. Virol. 2018;90:1814–1821. doi: 10.1002/jmv.25263.
    1. Heidecker B, et al. Virome sequencing in patients with myocarditis. Circ. Heart Fail. 2020;13:e007103–e007108. doi: 10.1161/CIRCHEARTFAILURE.120.007103.
    1. Hage-Sleiman M, et al. Meningococcal purpura fulminans and severe myocarditis with clinical meningitis but no meningeal inflammation: a case report. BMC Infect. Dis. 2019;19:252–257. doi: 10.1186/s12879-019-3866-x.
    1. Avsar S, et al. Acute fulminant eosinophilic myocarditis due to Giardia lamblia infection presented with cardiogenic shock in a young patient. Anatol. J. Cardiol. 2019;21:234–235.
    1. Leung MC, Harper RW, Boxall J. Extracorporeal membrane oxygenation in fulminant myocarditis complicating systemic lupus erythematosus. Med J. Aust. 2002;176:374–375. doi: 10.5694/j.1326-5377.2002.tb04458.x.
    1. Lin CY, Hsu CY, Huang PH. Rapid resolution of severe myocardial dysfunction in a patient with rheumatoid arthritis by intravenous immunoglobulin and steroid treatment. Acta Cardiol. Sin. 2014;30:570–573.
    1. Dinser R, et al. Endocardial and myocardial involvement in systemic sclerosis-is there a relevant inflammatory component? Jt. Bone Spine. 2013;80:320–323. doi: 10.1016/j.jbspin.2012.10.009.
    1. Watanabe T, et al. Acute fulminant myocarditis in a patient with primary Sjogren’s syndrome. Scand. J. Rheumatol. 2019;48:164–165. doi: 10.1080/03009742.2018.1514068.
    1. Lichtman AH. The heart of the matter: protection of the myocardium from T cells. J. Autoimmun. 2013;45:90–96. doi: 10.1016/j.jaut.2013.05.004.
    1. Tagawa M, et al. Successful treatment of acute fulminant eosinophilic myocarditis in a patient with ulcerative colitis using steroid therapy and percutaneous cardiopulmonary support. Intern. Med. 2019;58:1111–1118. doi: 10.2169/internalmedicine.1528-18.
    1. Ginsberg F, Parrillo JE. Fulminant myocarditis. Crit. Care Clin. 2013;29:465–483. doi: 10.1016/j.ccc.2013.03.004.
    1. Allen SF, et al. Acute necrotizing eosinophilic myocarditis in a patient taking Garcinia cambogia extract successfully treated with high-dose corticosteroids. Can. J. Cardiol. 2014;30:1732.e13–e15. doi: 10.1016/j.cjca.2014.08.025.
    1. Lo MH, et al. Drug reaction with eosinophilia and systemic symptoms syndrome associated myocarditis: a survival experience after extracorporeal membrane oxygenation support. J. Clin. Pharm. Ther. 2013;38:172–174. doi: 10.1111/jcpt.12025.
    1. Felker GM, et al. The spectrum of dilated cardiomyopathy. The Johns Hopkins experience with 1,278 patients. Medicine. 1999;78:270–83.. doi: 10.1097/00005792-199907000-00005.
    1. Johnson DB, et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 2016;375:1749–1755. doi: 10.1056/NEJMoa1609214.
    1. Norwood TG, et al. Smoldering myocarditis following immune checkpoint blockade. J. Immunother. Cancer. 2017;5:91–96. doi: 10.1186/s40425-017-0296-4.
    1. Champion SN, Stone JR. Immune checkpoint inhibitor associated myocarditis occurs in both high-grade and low-grade forms. Mod. Pathol. 2020;33:99–108. doi: 10.1038/s41379-019-0363-0.
    1. Tajiri K, Aonuma K, Sekine I. Immune checkpoint inhibitor-related myocarditis. Jpn. J. Clin. Oncol. 2018;48:7–12. doi: 10.1093/jjco/hyx154.
    1. Wang DY, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4:1721–1728. doi: 10.1001/jamaoncol.2018.3923.
    1. Moslehi JJ, et al. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018;391:933. doi: 10.1016/S0140-6736(18)30533-6.
    1. Zhang L, et al. Cardiotoxicity of immune checkpoint inhibitors. Curr. Treat. Options Cardiovasc. Med. 2019;21:32–48. doi: 10.1007/s11936-019-0731-6.
    1. Fung E, et al. Fulminant eosinophilic myocarditis following ICD implantation in a patient with undisclosed nickel allergy. Int. J. Cardiol. 2016;203:1018–1019. doi: 10.1016/j.ijcard.2015.11.119.
    1. Kusano KF, Satomi K. Diagnosis and treatment of cardiac sarcoidosis. Heart. 2016;102:184–190. doi: 10.1136/heartjnl-2015-307877.
    1. From AM, Maleszewski JJ, Rihal CS. Current status of endomyocardial biopsy. Mayo Clin. Proc. 2011;86:1095–1102. doi: 10.4065/mcp.2011.0296.
    1. Dominguez F, et al. Update on Myocarditis and Inflammatory Cardiomyopathy: Reemergence of Endomyocardial Biopsy. Rev. Española de. Cardiol.ía. 2016;69:178–187. doi: 10.1016/j.recesp.2015.10.018.
    1. Hashimoto H, Hashikata T, Shindo A, Horiuchi H. Eosinophilic myocarditis with hypersegmented granulocytes and neutrophilia without eosinophilia: a case mimicking neutrophilic myocarditis. Int. J. Surg. Pathol. 2018;26:635–636. doi: 10.1177/1066896918766669.
    1. Ackermann M, et al. Parvovirus B19-induced angiogenesis in fulminant myocarditis. Eur. Heart J. 2020;41:1309. doi: 10.1093/eurheartj/ehaa092.
    1. Ammirati E, et al. Fulminant versus acute nonfulminant myocarditis in patients with left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 2019;74:299–311. doi: 10.1016/j.jacc.2019.04.063.
    1. Beuy J, Wiwanitkit V. Acute fulminant eosinophilic myocarditis due to Giardia lamblia infection. Anatol. J. Cardiol. 2019;21:293–294.
    1. Morikawa D, Hiraoka E, Obunai K, Norisue Y. Myocarditis Associated with Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) Syndrome: A Case Report and Review of the Literature. Am. J. Case Rep. 2018;19:978–984. doi: 10.12659/AJCR.909569.
    1. Xu J, Brooks EG. Giant cell myocarditis: a brief review. Arch. Pathol. Lab. Med. 2016;140:1429–1434. doi: 10.5858/arpa.2016-0068-RS.
    1. Kasouridis I, Majo J, MacGowan G, Clark AL. Giant cell myocarditis presenting with acute heart failure. BMJ Case Rep. 2017;2017:7219574–7219576.
    1. Fersini F, et al. Sudden unexpected death in a case of necrotizing eosinophilic myocarditis. Leg. Med. 2019;38:1–4. doi: 10.1016/j.legalmed.2019.03.002.
    1. Akita T, et al. Successful triple combination immunosuppressive therapy with prednisolone, cyclosporine, and mycophenolate mofetil to treat recurrent giant cell myocarditis. Intern. Med. 2019;58:2035–2039. doi: 10.2169/internalmedicine.2471-18.
    1. Pande A, Culver DA. Knowing when to use steroids, immunosuppressants or biologics for the treatment of sarcoidosis. Expert Rev. Respir. Med. 2020;14:285–298. doi: 10.1080/17476348.2020.1707672.
    1. Nakamura H, et al. Diverse stage-dependent effects of glucocorticoids in a murine model of viral myocarditis. J. Cardiol. 2013;61:237–42.. doi: 10.1016/j.jjcc.2012.11.006.
    1. Ikarashi K, et al. An autopsy case of giant cell myocarditis showing shared pathology in the myocardium and skeletal muscles. Cardiovasc. Pathol. 2019;42:10–14. doi: 10.1016/j.carpath.2019.05.003.
    1. Segawa, T., Arita, Y., Akari, T. & Hasegawa, S. Fulminant myocarditis. BMJ Case Rep. 2018 (2018).
    1. Vdovenko D, Eriksson U. Regulatory role of CD4(+) T cells in myocarditis. J. Immunol. Res. 2018;2018:4396351–4396361. doi: 10.1155/2018/4396351.
    1. Myers JM, et al. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight. 2016;1:e85851–e85869. doi: 10.1172/jci.insight.85851.
    1. Cavalli G, et al. Treating life-threatening myocarditis by blocking interleukin-1. Crit. Care Med. 2016;44:e751–e754. doi: 10.1097/CCM.0000000000001654.
    1. Nie S, et al. The protective effect of interfering TLR9-IRF5 signaling pathway on the development of CVB3-induced myocarditis. Clin. Immunol. 2019;207:24–35. doi: 10.1016/j.clim.2019.07.002.
    1. Vallance TM, et al. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis. Mediators Inflamm. 2017;2017:9605894–9605906. doi: 10.1155/2017/9605894.
    1. Yoon EC, et al. Lyme disease: a case report of a 17-year-old male with fatal Lyme carditis. Cardiovasc. Pathol. 2015;24:317–321. doi: 10.1016/j.carpath.2015.03.003.
    1. Hanke ML, Angle A, Kielian T. MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLoS ONE. 2012;7:e42476–e42487. doi: 10.1371/journal.pone.0042476.
    1. Ciprandi G, et al. HMGB1 in nasal inflammatory diseases: a reappraisal 30 years after its discovery. Expert Rev. Clin. Immunol. 2020;16:457–463. doi: 10.1080/1744666X.2020.1752668.
    1. Xue YL, et al. Silencing of STAT4 protects against autoimmune myocarditis by regulating Th1/Th2 immune response via inactivation of the NF-kappaB pathway in rats. Inflammation. 2019;42:1179–1189. doi: 10.1007/s10753-019-00978-3.
    1. Kurdi M, Zgheib C, Booz GW. Recent developments on the crosstalk between STAT3 and inflammation in heart function and disease. Front. Immunol. 2018;9:3029–3038. doi: 10.3389/fimmu.2018.03029.
    1. Kesici S, Aykan HH, Orhan D, Bayrakci B. Fulminant COVID-19-related myocarditis in an infant. Eur. Heart J. 2020;41:3021. doi: 10.1093/eurheartj/ehaa515.
    1. Zhang C, et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int. J. Antimicrob. Agents. 2020;55:105954–105960. doi: 10.1016/j.ijantimicag.2020.105954.
    1. Abdullah M, Berthiaume JM, Willis MS. Tumor necrosis factor receptor-associated factor 6 as a nuclear factor kappa B-modulating therapeutic target in cardiovascular diseases: at the heart of it all. Transl. Res. 2018;195:48–61. doi: 10.1016/j.trsl.2017.10.012.
    1. Wang L, et al. CVB3 nonstructural 2A protein modulates SREBP1a signaling via the MEK/ERK pathway. J. Virol. 2018;92:e01060–18..
    1. Huang C, et al. Myc is involved in Genistein protecting against LPS-induced myocarditis in vitro through mediating MAPK/JNK signaling pathway. Biosci. Rep. 2020;40:BSR20194472–BSR20194482. doi: 10.1042/BSR20194472.
    1. Bracamonte-Baran W, Cihakova D. Cardiac autoimmunity: myocarditis. Adv. Exp. Med. Biol. 2017;1003:187–221. doi: 10.1007/978-3-319-57613-8_10.
    1. Zuo H, et al. Temporal echocardiography findings in patients with fulminant myocarditis: beyond ejection fraction decline. Front. Med. 2019;14:284–292. doi: 10.1007/s11684-019-0713-9.
    1. Ferreira VM, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J. Am. Coll. Cardiol. 2018;72:3158–3176. doi: 10.1016/j.jacc.2018.09.072.
    1. Kazanski V, Mitrokhin VM, Mladenov MI, Kamkin AG. Cytokine effects on mechano-induced electrical activity in atrial myocardium. Immunol. Invest. 2017;46:22–37. doi: 10.1080/08820139.2016.1208220.
    1. Du Bois JS, Udelson JE, Atkins MB. Severe reversible global and regional ventricular dysfunction associated with high-dose interleukin-2 immunotherapy. J. Immunother. Emphas. Tumor Immunol. 1995;18:119–23.. doi: 10.1097/00002371-199508000-00006.
    1. Dorn GW., 2nd Inflame on!: mitochondrial escape provokes cytokine storms that doom the heart. Circ. Res. 2012;111:271–273. doi: 10.1161/CIRCRESAHA.112.275867.
    1. Remels AHV, et al. NF-kappaB-mediated metabolic remodelling in the inflamed heart in acute viral myocarditis. Biochim Biophys. Acta Mol. Basis Dis. 2018;1864:2579–2589. doi: 10.1016/j.bbadis.2018.04.022.
    1. Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial dysfunction and inflammaging in heart failure: novel roles of CYP-derived epoxylipids. Cells. 2020;9:1565–1592. doi: 10.3390/cells9071565.
    1. An J, et al. Differential sensitivity to LPS-induced myocardial dysfunction in the isolated brown Norway and Dahl S rat hearts: roles of mitochondrial function, NF-kappaB activation, and TNF-alpha production. Shock. 2012;37:325–332. doi: 10.1097/SHK.0b013e31823f146f.
    1. Nie J, et al. Activation of CaMKII via ER-stress mediates coxsackievirus B3-induced cardiomyocyte apoptosis. Cell Biol. Int. 2020;44:488–498. doi: 10.1002/cbin.11249.
    1. Badorff C, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat. Med. 1999;5:320–326. doi: 10.1038/6543.
    1. Cheung C, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in coxsackievirus-induced myocarditis. Cardiovasc. Pathol. 2006;15:63–74. doi: 10.1016/j.carpath.2005.11.008.
    1. Jenke A, et al. Adiponectin attenuates profibrotic extracellular matrix remodeling following cardiac injury by up-regulating matrix metalloproteinase 9 expression in mice. Physiol. Rep. 2017;5:e13523–e13537. doi: 10.14814/phy2.13523.
    1. Xinggang W, et al. FTY720 alleviates CVB3‐induced myocarditis and inhibits viral replication through regulating S1P receptors and AKT-caspase. J. Cell Physiol. 2019;234:1–12. doi: 10.1002/jcp.27682.
    1. Wang Y, et al. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog. 2018;14:e1006872–e1006888. doi: 10.1371/journal.ppat.1006872.
    1. Zeng C, Wang R, Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications. Int. J. Biol. Sci. 2019;15:1345–1357. doi: 10.7150/ijbs.33568.
    1. Zhou F, et al. Necroptosis may be a novel mechanism for cardiomyocyte death in acute myocarditis. Mol. Cell Biochem. 2018;442:11–18. doi: 10.1007/s11010-017-3188-5.
    1. Ogawa S, et al. The clinical potential of impella 5.0 support in the treatment of recurrent fulminant viral myocarditis with profound cardiogenic shock. Intern. Med. 2019;58:1459–1462. doi: 10.2169/internalmedicine.1866-18.
    1. Arumugam R, et al. An evidence for surface expression of an immunogenic epitope of sarcoplasmic/endoplasmic reticulum calcium-ATPase2a on antigen-presenting cells from naive mice in the mediation of autoimmune myocarditis. Immunobiology. 2020;225:151896–151905. doi: 10.1016/j.imbio.2019.12.005.
    1. Pinto YM, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016;37:1850–1858. doi: 10.1093/eurheartj/ehv727.
    1. Sawamura A, et al. Prognostic value of electrocardiography in patients with fulminant myocarditis supported by percutaneous venoarterial extracorporeal membrane oxygenation ― analysis from the CHANGE PUMP study ―. Circ. J. 2018;82:2089–2095. doi: 10.1253/circj.CJ-18-0136.
    1. Zhang T, et al. Inhibition of Na/K-ATPase promotes myocardial tumor necrosis factor-alpha protein expression and cardiac dysfunction via calcium/mTOR signaling in endotoxemia. Basic Res. Cardiol. 2012;107:254–265. doi: 10.1007/s00395-012-0254-8.
    1. Amadou A, et al. Arachidonic acid mediates dual effect of TNF-alpha on Ca2+ transients and contraction of adult rat cardiomyocytes. Am. J. Physiol. Cell Physiol. 2002;282:C1339–C1347. doi: 10.1152/ajpcell.00471.2001.
    1. Meini A, et al. Nitric oxide modulation of interleukin-1[beta]-evoked intracellular Ca2+ release in human astrocytoma U-373 MG cells and brain striatal slices. J. Neurosci. 2000;20:8980–8986. doi: 10.1523/JNEUROSCI.20-24-08980.2000.
    1. Casella, M. et al. Diagnostic Yield of Electroanatomic Voltage Mapping in Guiding Endomyocardial Biopsies. Circulation. 2020, 10.1161/CIRCULATIONAHA.120.046900 (2020).
    1. Nguyen MN, Kiriazis H, Gao XM, Du XJ. Cardiac fibrosis and arrhythmogenesis. Compr. Physiol. 2017;7:1009–1049. doi: 10.1002/cphy.c160046.
    1. Oka E, et al. Prevalence and significance of an early repolarization electrocardiographic pattern and its mechanistic insight based on cardiac magnetic resonance imaging in patients with acute myocarditis. Circ. Arrhythm. Electrophysiol. 2019;12:e006969–e006976. doi: 10.1161/CIRCEP.118.006969.
    1. Mahmood SS, et al. Myocarditis with tremelimumab plus durvalumab combination therapy for endometrial cancer: a case report. Gynecol. Oncol. Rep. 2018;25:74–77. doi: 10.1016/j.gore.2018.05.014.
    1. Veronese G, et al. Not every fulminant lymphocytic myocarditis fully recovers. J. Cardiovasc. Med. 2018;19:453–454.
    1. Sharma AN, Stultz JR, Bellamkonda N, Amsterdam EA. Fulminant myocarditis: epidemiology, pathogenesis, diagnosis, and management. Am. J. Cardiol. 2019;124:1954–1960. doi: 10.1016/j.amjcard.2019.09.017.
    1. Kociol R. D., et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the american heart association. Circulation https://10.1161/CIR.0000000000000745:CIR0000000000000745-68 (2020).
    1. McCarthy RE, 3rd, et al. Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N. Engl. J. Med. 2000;342:690–695. doi: 10.1056/NEJM200003093421003.
    1. Friedrich MG, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J. Am. Coll. Cardiol. 2009;53:1475–1487. doi: 10.1016/j.jacc.2009.02.007.
    1. Li H, et al. Tissue characterization by mapping and strain cardiac MRI to evaluate myocardial inflammation in fulminant myocarditis. J. Magn. Reson. Imaging. 2020;52:930–938. doi: 10.1002/jmri.27094.
    1. Caspar T, et al. Acute myocarditis diagnosed by layer-specific 2D longitudinal speckle tracking analysis. Echocardiography. 2016;33:157–158. doi: 10.1111/echo.13045.
    1. Wang Z, et al. Early characteristics of fulminant myocarditis vs non-fulminant myocarditis: A meta-analysis. Medicine. 2019;98:e14697–e14704. doi: 10.1097/MD.0000000000014697.
    1. Bellamoli M, et al. An odd couple: acalculous cholecystitis masking a fulminant myocarditis. J. Cardiovasc. Med. 2019;21:327–332. doi: 10.2459/JCM.0000000000000909.
    1. Saito S, et al. Diagnosis, medical treatment, and stepwise mechanical circulatory support for fulminat myocarditis. J. Artif. Organs. 2018;21:172–179. doi: 10.1007/s10047-017-1011-4.
    1. Chong SZ, et al. Associations with the in-hospital survival following extracorporeal membrane oxygenation in adult acute fulminant myocarditis. J. Clin. Med. 2018;7:452–10. doi: 10.3390/jcm7110452.
    1. Hsu J, et al. Survival analysis of extracorporeal membrane oxygenation in neonatal and pediatric patients - A nationwide cohort study. J. Formos. Med Assoc. 2019;118:1339–1346. doi: 10.1016/j.jfma.2018.12.008.
    1. Zanatta A, et al. Story telling of myocarditis. Int. J. Cardiol. 2019;294:61–64. doi: 10.1016/j.ijcard.2019.07.046.
    1. Kereiakes DJ, Parmley WW. Myocarditis and cardiomyopathy. Am. Heart J. 1984;108:1318–1326. doi: 10.1016/0002-8703(84)90760-9.
    1. Grogan M, et al. Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 1995;26:80–84. doi: 10.1016/0735-1097(95)00148-S.
    1. Maze SS, Adolph RJ. Myocarditis: unresolved issues in diagnosis and treatment. Clin. Cardiol. 1990;13:69–79. doi: 10.1002/clc.4960130203.
    1. Mason JW, et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N. Engl. J. Med. 1995;333:269–275. doi: 10.1056/NEJM199508033330501.
    1. McKenna WJ, Davies MJ. Immunosuppression for myocarditis. N. Engl. J. Med. 1995;333:312–313. doi: 10.1056/NEJM199508033330510.
    1. Unverzagt, S. et al. Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Syst. Rev. 10.1002/14651858.CD007398.pub3:CD007398-456 (2015).
    1. Nanchal RS, Truwit JD. Recent advances in understanding and treating acute respiratory distress syndrome. F1000Res. 2018;7:1322–1330. doi: 10.12688/f1000research.15493.1.
    1. Kimmoun A, Vanhuyse F, Levy B. Improving blood oxygenation during venovenous ECMO for ARDS. Intensive Care Med. 2013;39:1161–1162. doi: 10.1007/s00134-013-2903-2.
    1. Chaparro SV, et al. Combined use of Impella left ventricular assist device and extracorporeal membrane oxygenation as a bridge to recovery in fulminant myocarditis. ASAIO J. 2012;58:285–287. doi: 10.1097/MAT.0b013e31824b1f70.
    1. Spillmann F, et al. Mode-of-action of the PROPELLA concept in fulminant myocarditis. Eur. Heart J. 2019;40:2164–2169. doi: 10.1093/eurheartj/ehz124.
    1. Alushi B, et al. Impella versus IABP in acute myocardial infarction complicated by cardiogenic shock. Circulation. 2019;6:1249–1258.
    1. Dhruva SS, et al. Association of use of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2020;323:734–745. doi: 10.1001/jama.2020.0254.
    1. O’Neill WW, et al. A prospective, randomized clinical trial of hemodynamic support with impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention. Circulation. 2012;126:1717–1727. doi: 10.1161/CIRCULATIONAHA.112.098194.
    1. Narang N, Kim GH, Uriel N. It’s all in the tissue: a rare case of acute cardiogenic shock. Circulation. 2019;140:1519–1523. doi: 10.1161/CIRCULATIONAHA.119.042542.
    1. Kimura Y, et al. Massive biventricular myocardial calcification in a patient with fulminant myocarditis requiring ventricular assist device support. Intern. Med. 2019;58:1283–1286. doi: 10.2169/internalmedicine.2039-18.
    1. Ezaka M, Maeda T, Ohnishi Y. Intraoperative vasoplegic syndrome in patients with fulminant myocarditis on ventricular assist device placement. J. Anesth. 2019;33:304–310. doi: 10.1007/s00540-019-02625-5.
    1. Hasegawa-Tamba S, et al. Successful bridge-to-recovery treatment in a young patient with fulminant eosinophilic myocarditis: roles of a percutaneous ventricular assist device and endomyocardial biopsy. Case Rep. Emerg. Med. 2019;2019:1–8. doi: 10.1155/2019/8236735.
    1. Choi JO, et al. Thioredoxin, adiponectin and clinical course of acute fulminant myocarditis. Heart. 2011;97:1067–1073. doi: 10.1136/hrt.2010.219568.
    1. Abe S, et al. Plasma concentrations of cytokines and neurohumoral factors in a case of fulminant myocarditis successfully treated with intravenous immunoglobulin and percutaneous cardiopulmonary support. Circ. J. 2004;68:1223–1226. doi: 10.1253/circj.68.1223.
    1. Weinzierl AO, et al. Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4-/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. J. Virol. 2008;82:8149–8160. doi: 10.1128/JVI.00047-08.
    1. Shioji K, Kishimoto C, Sasayama S. Fc receptor-mediated inhibitory effect of immunoglobulin therapy on autoimmune giant cell myocarditis: concomitant suppression of the expression of dendritic cells. Circ. Res. 2001;89:540–546. doi: 10.1161/hh1801.096263.
    1. Hafezi-Moghadam A, et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat. Med. 2002;8:473–479. doi: 10.1038/nm0502-473.
    1. Huang X, et al. Intravenous immunoglobulin therapy for acute myocarditis in children and adults. Int. Heart J. 2019;60:359–365. doi: 10.1536/ihj.18-299.
    1. Huang C-H, Vallejo JG, Kollias G, Mann DL. Role of the innate immune system in acute viral myocarditis. Basic Res. Cardiol. 2009;104:228–237. doi: 10.1007/s00395-008-0765-5.
    1. De Luca G, et al. Therapeutic strategies for virus-negative myocarditis: a comprehensive review. Eur. J. Intern. Med. 2020;77:9–17. doi: 10.1016/j.ejim.2020.04.050.
    1. Blagova O, et al. Immunosuppressive therapy of biopsy proved immune-mediated lymphocytic myocarditis in the virus-negative and virus-positive patients. Cardiovasc Pathol. 2020;49:107260–107267. doi: 10.1016/j.carpath.2020.107260.
    1. Group, R. C. et al. Dexamethasone in hospitalized patients with Covid-19 - Preliminary Report. N. Engl. J. Med. 10.1056/NEJMoa2021436 (2020).
    1. Liao YC, et al. Fulminant myocarditis in an adult with 2009 pandemic influenza A (H1N1 influenza) infection. J. Chin. Med. Assoc. 2011;74:130–133. doi: 10.1016/j.jcma.2011.01.028.
    1. Mazzitelli M, et al. Severe myocarditis due to influenza A(H1N1)pdm09 viral infection in a young woman successfully treated with intravenous zanamivir: a case report. Clin. Case Rep. 2019;7:2336–2340. doi: 10.1002/ccr3.2499.
    1. Morioka I, et al. Survey of Japanese infants younger than 3 months who were treated with oseltamivir for influenza: safety of oseltamivir treatment. Scand. J. Infect. Dis. 2012;44:605–609. doi: 10.3109/00365548.2012.669844.
    1. Zhang L, et al. Functional metabolomics characterizes a key role for N-acetylneuraminic acid in coronary artery diseases. Circulation. 2018;137:1374–1390. doi: 10.1161/CIRCULATIONAHA.117.031139.
    1. Matsumori A, et al. Effects of free immunoglobulin light chains on viral myocarditis. Circ. Res. 2010;106:1533–1540. doi: 10.1161/CIRCRESAHA.110.218438.
    1. Pinkert S, et al. Soluble coxsackie- and adenovirus receptor (sCAR-Fc); a highly efficient compound against laboratory and clinical strains of coxsackie-B-virus. Antivir. Res. 2016;136:1–8. doi: 10.1016/j.antiviral.2016.10.010.
    1. Ammirati E, et al. Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis. Circulation. 2018;138:1088–1099. doi: 10.1161/CIRCULATIONAHA.118.035319.
    1. Zhang J, et al. China’s treatment regimen for fulminant myocarditis is bringing wonderful achievement to the world. Sci. China Life Sci. 2019;62:282–284. doi: 10.1007/s11427-018-9445-2.
    1. Ammirati, E. et al. Update on acute myocarditis. Trends Cardiovasc. Med. 10.1016/j.tcm.2020.05.008 (2020).
    1. Nishii M, et al. Serum levels of interleukin-10 on admission as a prognostic predictor of human fulminant myocarditis. J. Am. Coll. Cardiol. 2004;44:1292–1297. doi: 10.1016/j.jacc.2004.01.055.
    1. Lisa K, et al. Blocking the IL‑1β signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res. Cardiol. 2019;114:11–26. doi: 10.1007/s00395-019-0719-0.
    1. Tschope C, Cooper LT, Torre-Amione G, Van Linthout S. Management of myocarditis-related cardiomyopathy in adults. Circ. Res. 2019;124:1568–1583. doi: 10.1161/CIRCRESAHA.118.313578.
    1. Caforio AL, et al. Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet. 1994;344:773–777. doi: 10.1016/S0140-6736(94)92339-6.
    1. Edin ML, Zeldin DC. An improved protocol for the treatment of fulminant myocarditis. Sci. China Life Sci. 2019;62:433–434. doi: 10.1007/s11427-019-9507-x.
    1. Callan PD, et al. Acute fulminant necrotizing eosinophilic myocarditis: early diagnosis and treatment. ESC Heart Fail. 2017;4:660–664. doi: 10.1002/ehf2.12146.
    1. Felker GM, et al. Echocardiographic findings in fulminant and acute myocarditis. J. Am. Coll. Cardiol. 2000;36:227–232. doi: 10.1016/S0735-1097(00)00690-2.
    1. Rodriguez-Gonzalez M, Sanchez-Codez MI, Lubian-Gutierrez M, Castellano-Martinez A. Clinical presentation and early predictors for poor outcomes in pediatric myocarditis: a retrospective study. World J. Clin. Cases. 2019;7:548–561. doi: 10.12998/wjcc.v7.i5.548.

Source: PubMed

3
Abonnieren