Immunopathogenesis and immunomodulatory therapy for myocarditis

Wu He, Ling Zhou, Ke Xu, Huihui Li, James Jiqi Wang, Chen Chen, DaoWen Wang, Wu He, Ling Zhou, Ke Xu, Huihui Li, James Jiqi Wang, Chen Chen, DaoWen Wang

Abstract

Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.

Keywords: etiology; immunomodulatory; immunopathogenesis; myocarditis; pathogen.

© 2023. Science China Press.

References

    1. Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020;126:1260–1280. doi: 10.1161/CIRCRESAHA.120.315937.
    1. Afanasyeva M, Georgakopoulos D, Belardi DF, Ramsundar AC, Barin JG, Kass DA, Rose NR. Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: correlation with cardiac function. Am J Pathol. 2004;164:807–815. doi: 10.1016/S0002-9440(10)63169-0.
    1. Afanasyeva M, Wang Y, Kaya Z, Stafford EA, Dohmen KM, Sadighi Akha AA, Rose NR. Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-γ-independent pathway. Circulation. 2001;104:3145–3151. doi: 10.1161/hc5001.100629.
    1. Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430–433. doi: 10.1038/s41586-019-1546-z.
    1. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279–288. doi: 10.1016/j.immuni.2010.08.010.
    1. Ahuja SS, Estrada CA, Lindsey ML. Crosstalk between cytotoxic T-lymphocyte-associated antigen-4 and interleukin-12 in cytotoxic T-lymphocyte-mediated myocarditis: adding another link to the chain. Circ Res. 2007;101:218–220. doi: 10.1161/CIRCRESAHA.107.158238.
    1. Al-Kofahi M, Omura S, Tsunoda I, Sato F, Becker F, Gavins FNE, Woolard MD, Pattillo C, Zawieja D, Muthuchamy M, et al. IL-1β reduces cardiac lymphatic muscle contraction via COX-2 and PGE2 induction: potential role in myocarditis. Biomed Pharmacother. 2018;107:1591–1600. doi: 10.1016/j.biopha.2018.08.004.
    1. Aly M, Wiltshire S, Chahrour G, Loredo Osti JC, Vidal SM. Complex genetic control of host susceptibility to Coxsackievirus B3-induced myocarditis. Genes Immun. 2007;8:193–204. doi: 10.1038/sj.gene.6364374.
    1. Ammirati E, Cipriani M, Lilliu M, Sormani P, Varrenti M, Raineri C, Petrella D, Garascia A, Pedrotti P, Roghi A, et al. Survival and left ventricular function changes in fulminant versus nonfulminant acute myocarditis. Circulation. 2017;136:529–545. doi: 10.1161/CIRCULATIONAHA.117.026386.
    1. Ammirati E, Frigerio M, Adler ED, Basso C, Birnie DH, Brambatti M, Friedrich MG, Klingel K, Lehtonen J, Moslehi JJ, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail. 2020;13:e007405. doi: 10.1161/CIRCHEARTFAILURE.120.007405.
    1. Ammirati E, Veronese G, Bottiroli M, Wang DW, Cipriani M, Garascia A, Pedrotti P, Adler ED, Frigerio M. Update on acute myocarditis. Trends Cardiovasc Med. 2021;31:370–379. doi: 10.1016/j.tcm.2020.05.008.
    1. Ammirati E, Veronese G, Brambatti M, Merlo M, Cipriani M, Potena L, Sormani P, Aoki T, Sugimura K, Sawamura A, et al. Fulminant versus acute nonfulminant myocarditis in patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2019;74:299–311. doi: 10.1016/j.jacc.2019.04.063.
    1. An B, Liu X, Li G, Yuan H. Interleukin-37 ameliorates Coxsackievirus B3-induced viral myocarditis by modulating the Th17/regulatory T cell immune response. J Cardiovasc Pharmacol. 2017;69:305–313. doi: 10.1097/FJC.0000000000000476.
    1. Andréoletti L, Lévêque N, Boulagnon C, Brasselet C, Fornes P. Viral causes of human myocarditis. Arch Cardiovasc Dis. 2009;102:559–568. doi: 10.1016/j.acvd.2009.04.010.
    1. Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol. 1987;18:619–624. doi: 10.1016/S0046-8177(87)80363-5.
    1. Axelrod ML, Meijers WC, Screever EM, Qin J, Carroll MG, Sun X, Tannous E, Zhang Y, Sugiura A, Taylor BC, et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature. 2022;611:818–826. doi: 10.1038/s41586-022-05432-3.
    1. Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723. doi: 10.1016/j.lfs.2020.117723.
    1. Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res. 2019;124:263–278. doi: 10.1161/CIRCRESAHA.118.314028.
    1. Baldeviano GC, Barin JG, Talor MV, Srinivasan S, Bedja D, Zheng D, Gabrielson K, Iwakura Y, Rose NR, Cihakova D. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106:1646–1655. doi: 10.1161/CIRCRESAHA.109.213157.
    1. Bao J, Sun T, Yue Y, Xiong S. Macrophage NLRP3 inflammasome activated by CVB3 capsid proteins contributes to the development of viral myocarditis. Mol Immunol. 2019;114:41–48. doi: 10.1016/j.molimm.2019.07.012.
    1. Barbosa LC, Gonçalves TL, de Araujo LP, Rosario LVO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol. 2021;137:106829. doi: 10.1016/j.vph.2021.106829.
    1. Barhoum P, Pineton de Chambrun M, Dorgham K, Kerneis M, Burrel S, Quentric P, Parizot C, Chommeloux J, Bréchot N, Moyon Q, et al. Phenotypic heterogeneity of fulminant COVID-19-related myocarditis in adults. J Am Coll Cardiol. 2022;80:299–312. doi: 10.1016/j.jacc.2022.04.056.
    1. Barin JG, Talor MV, Baldeviano GC, Kimura M, Rose NR, Čiháková D. Mechanisms of IFNγ regulation of autoimmune myocarditis. Exp Mol Pathol. 2010;89:83–91. doi: 10.1016/j.yexmp.2010.06.005.
    1. Bartlett EJ, Lenzo JC, Sivamoorthy S, Mansfield JP, Cull VS, James CM. Type I IFN-β gene therapy suppresses cardiac CD8+ T-cell infiltration during autoimmune myocarditis. Immunol Cell Biol. 2004;82:119–126. doi: 10.1046/j.0818-9641.2004.01234.x.
    1. Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature. 2017;547:179–184. doi: 10.1038/nature22978.
    1. Basso C. Myocarditis. N Engl J Med. 2022;387:1488–1500. doi: 10.1056/NEJMra2114478.
    1. Bearse M, Hung YP, Krauson AJ, Bonanno L, Boyraz B, Harris C K, Helland TL, Hilburn CF, Hutchison B, Jobbagy S, et al. Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19. Mod Pathol. 2021;34:1345–1357. doi: 10.1038/s41379-021-00790-1.
    1. Bermas BL, Zaha VG. Mending broken hearts: a new treatment paradigm for immune checkpoint inhibitor-induced myocarditis. Circulation. 2021;143:767–769. doi: 10.1161/CIRCULATIONAHA.120.052307.
    1. Bird L. Calming the cytokine storm. Nat Rev Immunol. 2018;18:417. doi: 10.1038/s41577-018-0030-6.
    1. Blanco-Domínguez R, Sánchez-Díaz R, de la Fuente H, Jiménez-Borreguero LJ, Matesanz-Marín A, Relaño M, Jiménez-Alejandre R, Linillos-Pradillo B, Tsilingiri K, Martín-Mariscal ML, et al. A novel circulating noncoding small RNA for the detection of acute myocarditis. N Engl J Med. 2021;384:2014–2027. doi: 10.1056/NEJMoa2003608.
    1. Blankenhorn MA, Gall EA. Myocarditis and myocardosis; a clinicopathologic appraisal. Circulation. 1956;13:217–223. doi: 10.1161/01.CIR.13.2.217.
    1. Błyszczuk P. Myocarditis in humans and in experimental animal models. Front Cardiovasc Med. 2019;6:64. doi: 10.3389/fcvm.2019.00064.
    1. Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38:1413–1425.
    1. Bockstahler M, Fischer A, Goetzke CC, Neumaier HL, Sauter M, Kespohl M, Müller AM, Meckes C, Salbach C, Schenk M, et al. Heart-specific immune responses in an animal model of autoimmune-related myocarditis mitigated by an immunoproteasome inhibitor and genetic ablation. Circulation. 2020;141:1885–1902. doi: 10.1161/CIRCULATIONAHA.119.043171.
    1. Bonaca MP, Olenchock BA, Salem JE, Wiviott SD, Ederhy S, Cohen A, Stewart GC, Choueiri TK, Di Carli M, Allenbach Y, et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation. 2019;140:80–91. doi: 10.1161/CIRCULATIONAHA.118.034497.
    1. Boyd J, Mathur S, Wang Y, Bateman R, Walley K. Tolllike receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-κB dependent inflammatory response. Cardiovasc Res. 2006;72:384–393. doi: 10.1016/j.cardiores.2006.09.011.
    1. Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021;144:471–484. doi: 10.1161/CIRCULATIONAHA.121.056135.
    1. Brambatti M, Matassini MV, Adler ED, Klingel K, Camici PG, Ammirati E. Eosinophilic myocarditis: characteristics, treatment, and outcomes. J Am Coll Cardiol. 2017;70:2363–2375. doi: 10.1016/j.jacc.2017.09.023.
    1. Breikaa RM, Lilly B. The Notch pathway: a link between COVID-19 pathophysiology and its cardiovascular complications. Front Cardiovasc Med. 2021;8:681948. doi: 10.3389/fcvm.2021.681948.
    1. Brener, M.I., Hulke, M.L., Fukuma, N., Golob, S., Zilinyi, R.S., Zhou, Z., Tzimas, C., Russo, I., McGroder, C., Pfeiffer, R.D., et al. (2022). Clinico-histopathologic and single-nuclei RNA-sequencing insights into cardiac injury and microthrombi in critical COVID-19. JCI Insight 7.
    1. Buckley L, Humphrey MB. Glucocorticoid-induced osteoporosis. N Engl J Med. 2018;379:2547–2556. doi: 10.1056/NEJMcp1800214.
    1. Caforio ALP, Mahon NJ, Tona F, McKenna WJ. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail. 2002;4:411–417. doi: 10.1016/S1388-9842(02)00010-7.
    1. Caforio ALP, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, Fu M, Helio T, Heymans S, Jahns R, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34:2636–2648. doi: 10.1093/eurheartj/eht210.
    1. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17:233–247. doi: 10.1038/nri.2017.1.
    1. Canter CE, Simpson KE. Diagnosis and treatment of myocarditis in children in the current era. Circulation. 2014;129:115–128. doi: 10.1161/CIRCULATIONAHA.113.001372.
    1. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–270. doi: 10.1038/s41577-020-0308-3.
    1. Carai P, Papageorgiou AP, Van Linthout S, Deckx S, Velthuis S, Lutgens E, Wijnands E, Tschöpe C, Schmuttermaier C, Kzhyshkowska J, et al. Stabilin-1 mediates beneficial monocyte recruitment and tolerogenic macrophage programming during CVB3-induced viral myocarditis. J Mol Cell Cardiol. 2021;165:31–39. doi: 10.1016/j.yjmcc.2021.12.009.
    1. Castiello T, Georgiopoulos G, Finocchiaro G, Claudia M, Gianatti A, Delialis D, Aimo A, Prasad S. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail Rev. 2022;27:251–261. doi: 10.1007/s10741-021-10087-9.
    1. Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, Sota J, Dinarello CA. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2021;20:102763. doi: 10.1016/j.autrev.2021.102763.
    1. Cavalli G, Foppoli M, Cabrini L, Dinarello CA, Tresoldi M, Dagna L. Interleukin-1 receptor blockade rescues myocarditis-associated end-stage heart failure. Front Immunol. 2017;8:131. doi: 10.3389/fimmu.2017.00131.
    1. Cavalli G, Pappalardo F, Mangieri A, Dinarello CA, Dagna L, Tresoldi M. Treating life-threatening myocarditis by blocking interleukin-1. Crit Care Med. 2016;44:e751–e754. doi: 10.1097/CCM.0000000000001654.
    1. Cen Z, Li Y, Wei B, Wu W, Huang Y, Lu J. The role of B cells in regulation of Th cell differentiation in Coxsackievirus B3-induced acute myocarditis. Inflammation. 2021;44:1949–1960. doi: 10.1007/s10753-021-01472-5.
    1. Chan KY, Iwahara M, Benson LN, Wilson GJ, Freedom RM. Immunosuppressive therapy in the management of acute myocarditis in children: a clinical trial. J Am Coll Cardiol. 1991;17:458–460. doi: 10.1016/S0735-1097(10)80115-9.
    1. Chanh HQ, Trieu HT, Vuong HNT, Hung TK, Phan TQ, Campbell J, Pley C, Yacoub S. Novel clinical monitoring approaches for reemergence of diphtheria myocarditis, Vietnam. Emerg Infect Dis. 2022;28:282–290. doi: 10.3201/eid2802.210555.
    1. Chen HS, Wang W, Wu SN, Liu JP. Corticosteroids for viral myocarditis. Cochrane Database Syst Rev. 2013;2013:CD004471.
    1. Chen J, Yang F, Shi S, Liu X, Qin F, Wei X, Huang Y, Liang W, Miao L. The severity of CVB3-induced myocarditis can be improved by blocking the orchestration of NLRP3 and Th17 in BALB/c mice. Mediators Inflamm. 2021;2021:5551578. doi: 10.1155/2021/5551578.
    1. Cheng CY, Baritussio A, Giordani AS, Iliceto S, Marcolongo R, Caforio ALP. Myocarditis in systemic immune-mediated diseases: Prevalence, characteristics and prognosis. A systematic review. Autoimmun Rev. 2022;21:103037. doi: 10.1016/j.autrev.2022.103037.
    1. Cheng C, Cheng GY, Shan ZG, Baritussio A, Lorenzoni G, Tyminska A, Ozieranski K, Iliceto S, Marcolongo R, Gregori D, et al. Efficacy of immunosuppressive therapy in myocarditis: a 30-year systematic review and meta analysis. Autoimmun Rev. 2021;20:102710. doi: 10.1016/j.autrev.2020.102710.
    1. Chertow DS, Childs RW, Arai AE, Davey RT., Jr. Cardiac MRI findings suggest myocarditis in severe Ebola virus disease. JACC Cardiovasc Imaging. 2017;10:711–713. doi: 10.1016/j.jcmg.2016.06.004.
    1. Chimenti C, Russo MA, Frustaci A. Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur Heart J. 2022;43:3463–3473. doi: 10.1093/eurheartj/ehac348.
    1. Chua GT, Kwan MYW, Chui CSL, Smith RD, Cheung ECL, Ma T, Leung MTY, Tsao SSL, Kan E, Ng WKC, et al. Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents following comirnaty vaccination. Clin Infect Dis. 2022;75:673–681. doi: 10.1093/cid/ciab989.
    1. Clemente-Casares X, Hosseinzadeh S, Barbu I, Dick SA, Macklin J A, Wang Y, Momen A, Kantores C, Aronoff L, Farno M, et al. A CD103+ conventional dendritic cell surveillance system prevents development of overt heart failure during subclinical viral myocarditis. Immunity. 2017;47:974–989.e8. doi: 10.1016/j.immuni.2017.10.011.
    1. Comarmond C, Cacoub P. Myocarditis in auto-immune or auto-inflammatory diseases. Autoimmun Rev. 2017;16:811–816. doi: 10.1016/j.autrev.2017.05.021.
    1. Cooper LT., Jr. Myocarditis. N Engl J Med. 2009;360:1526–1538. doi: 10.1056/NEJMra0800028.
    1. Cooper LT., Jr. When lightning strikes: fulminant myocarditis in the realm of inflammatory cardiomyopathies. Circulation. 2017;136:546–548. doi: 10.1161/CIRCULATIONAHA.117.029340.
    1. Corsten MF, Schroen B, Heymans S. Inflammation in viral myocarditis: friend or foe? Trends Mol Med. 2012;18:426–437. doi: 10.1016/j.molmed.2012.05.005.
    1. Coyne CB, Bergelson JM. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell. 2006;124:119–131. doi: 10.1016/j.cell.2005.10.035.
    1. Cruz-Adalia A, Jiménez-Borreguero LJ, Ramírez-Huesca M, Chico-Calero I, Barreiro O, López-Conesa E, Fresno M, Sánchez-Madrid F, Martín P. CD69 limits the severity of cardiomyopathy after autoimmune myocarditis. Circulation. 2010;122:1396–1404. doi: 10.1161/CIRCULATIONAHA.110.952820.
    1. Cui G, Li R, Zhao C, Wang DW. Case report: COVID-19 vaccination associated fulminant myocarditis. Front Cardiovasc Med. 2021;8:769616. doi: 10.3389/fcvm.2021.769616.
    1. De Luca, G., Cavalli, G., Campochiaro, C., Tresoldi, M., and Dagna, L. (2018). Myocarditis: an interleukin-1-mediated disease? Front Immunol 9.
    1. de Roos A. The many faces of myocarditis: role of cardiac MRI. Radiology. 2022;302:70–71. doi: 10.1148/radiol.2021212121.
    1. Edin ML, Zeldin DC. An improved protocol for the treatment of fulminant myocarditis. Sci China Life Sci. 2019;62:433–434. doi: 10.1007/s11427-019-9507-x.
    1. Eriksson U, Kurrer MO, Sebald W, Brombacher F, Kopf M. Dual role of the IL-12/IFN-γ axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-γ. J Immunol. 2001;167:5464–5469. doi: 10.4049/jimmunol.167.9.5464.
    1. Eriksson U, Kurrer MO, Sonderegger I, Iezzi G, Tafuri A, Hunziker L, Suzuki S, Bachmaier K, Bingisser RM, Penninger JM, et al. Activation of dendritic cells through the interleukin 1 receptor 1 is critical for the induction of autoimmune myocarditis. J Exp Med. 2003;197:323–331. doi: 10.1084/jem.20021788.
    1. Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol Mech Dis. 2008;3:127–155. doi: 10.1146/annurev.pathmechdis.3.121806.151534.
    1. Fairweather DL, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Steele RA, Gatewood SJL, Rose NR. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-γ and macrophage and neutrophil populations in the heart. J Immunol. 2005;174:261–269. doi: 10.4049/jimmunol.174.1.261.
    1. Feldman AM, McNamara D. Myocarditis. N Engl J Med. 2000;343:1388–1398. doi: 10.1056/NEJM200011093431908.
    1. Floyd, A., Lal, A., Molina, K., Puchalski, M., Miller, D., and May, L. (2018). When lightning strikes twice in pediatrics: case report and review of recurrent myocarditis. Pediatrics 141.
    1. Fox SE, Falgout L, Vander Heide RS. COVID-19 myocarditis: quantitative analysis of the inflammatory infiltrate and a proposed mechanism. Cardiovasc Pathol. 2021;54:107361. doi: 10.1016/j.carpath.2021.107361.
    1. Freiberg F, Sauter M, Pinkert S, Govindarajan T, Kaldrack J, Thakkar M, Fechner H, Klingel K, Gotthardt M. Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor. J Virol. 2014;88:7345–7356. doi: 10.1128/JVI.00104-14.
    1. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53:1475–1487. doi: 10.1016/j.jacc.2009.02.007.
    1. Frustaci A, Alfarano M, Verardo R, Agrati C, Casetti R, Miraldi F, Galea N, Letizia C, Chimenti C. Myocarditis-associated necrotizing coronary vasculitis: incidence, cause, and outcome. Eur Heart J. 2021;42:1609–1617. doi: 10.1093/eurheartj/ehaa973.
    1. Fung G, Luo H, Qiu Y, Yang D, McManus B. Myocarditis. Circ Res. 2016;118:496–514. doi: 10.1161/CIRCRESAHA.115.306573.
    1. Futamatsu H, Suzuki J, Mizuno S, Koga N, Adachi S, Kosuge H, Maejima Y, Hirao K, Nakamura T, Isobe M. Hepatocyte growth factor ameliorates the progression of experimental autoimmune myocarditis: a potential role for induction of T helper 2 cytokines. Circ Res. 2005;96:823–830. doi: 10.1161/01.RES.0000163016.52653.2e.
    1. Gangaplara A, Massilamany C, Brown DM, Delhon G, Pattnaik A K, Chapman N, Rose N, Steffen D, Reddy J. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-α-reactive CD4 T cells in A/J mice. Clin Immunol. 2012;144:237–249. doi: 10.1016/j.clim.2012.07.003.
    1. George J, Barshack I, Malka E, Goldberg I, Keren P, Laniado S, Keren G. The effect of intravenous immunoglobulins on the progression of experimental autoimmune myocarditis in the rat. Exp Mol Pathol. 2001;71:55–62. doi: 10.1006/exmp.2001.2382.
    1. Gil-Cruz C, Perez-Shibayama C, De Martin A, Ronchi F, van der Borght K, Niederer R, Onder L, Lütge M, Novkovic M, Nindl V, et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science. 2019;366:881–886. doi: 10.1126/science.aav3487.
    1. Gluckman TJ, Bhave NM, Allen LA, Chung EH, Spatz ES, Ammirati E, Baggish AL, Bozkurt B, Cornwell WK, III, Harmon KG, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: A report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;79:1717–1756. doi: 10.1016/j.jacc.2022.02.003.
    1. Goetzke CC, Althof N, Neumaier HL, Heuser A, Kaya Z, Kespohl M, Klingel K, Beling A. Mitigated viral myocarditis in A/J mice by the immunoproteasome inhibitor ONX 0914 depends on inhibition of systemic inflammatory responses in CoxsackievirusB3 infection. Basic Res Cardiol. 2021;116:7. doi: 10.1007/s00395-021-00848-w.
    1. Goser S, Ottl R, Brodner A, Dengler TJ, Torzewski J, Egashira K, Rose NR, Katus HA, Kaya Z. Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α in induction of experimental autoimmune myocarditis and effective anti-monocyte chemoattractant protein-1 gene therapy. Circulation. 2005;112:3400–3407. doi: 10.1161/CIRCULATIONAHA.105.572396.
    1. Guo Y, Wu W, Cen Z, Li X, Kong Q, Zhou Q. IL-22-producing Th22 cells play a protective role in CVB3-induced chronic myocarditis and dilated cardiomyopathy by inhibiting myocardial fibrosis. Virol J. 2014;11:230. doi: 10.1186/s12985-014-0230-z.
    1. Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: a major threat to human health. J Interferon Cytokine Res. 2020;40:19–23. doi: 10.1089/jir.2019.0085.
    1. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing JB, Lim EL, Teng KWW, Adeegbe D, Newell EW, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci USA. 2019;116:609–618. doi: 10.1073/pnas.1812186116.
    1. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier J C, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med. 2002;8:473–479. doi: 10.1038/nm0502-473.
    1. Hahn EA, Hartz VL, Moon TE, O’Connell JB, Herskowitz A, McManus BM, Mason JW. The Myocarditis Treatment Trial: design, methods and patient enrolment. Eur Heart J. 1995;16:162–167. doi: 10.1093/eurheartj/16.suppl_O.162.
    1. Han B, Jiang H, Liu Z, Zhang Y, Zhao L, Lu K, Xi J. CTLA4-Ig relieves inflammation in murine models of coxsackievirus B3-induced myocarditis. Can J Cardiol. 2012;28:239–244. doi: 10.1016/j.cjca.2011.11.014.
    1. Hang W, Chen C, Seubert JM, Wang DW. Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes. Sig Transduct Target Ther. 2020;5:287. doi: 10.1038/s41392-020-00360-y.
    1. Hanson PJ, Hossain AR, Qiu Y, Zhang HM, Zhao G, Li C, Lin V, Sulaimon S, Vlok M, Fung G, et al. Cleavage and sub-cellular redistribution of nuclear pore protein 98 by coxsackievirus B3 protease 2A impairs cardioprotection. Front Cell Infect Microbiol. 2019;9:265. doi: 10.3389/fcimb.2019.00265.
    1. Hanson PJ, Liu-Fei F, Ng C, Minato TA, Lai C, Hossain AR, Chan R, Grewal B, Singhera G, Rai H, et al. Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort. Lab Invest. 2022;102:814–825. doi: 10.1038/s41374-022-00783-x.
    1. Harris KG, Coyne CB. Enter at your own risk: how enteroviruses navigate the dangerous world of pattern recognition receptor signaling. Cytokine. 2013;63:230–236. doi: 10.1016/j.cyto.2013.05.007.
    1. Hasegawa H, Takano H, Zou Y, Qin Y, Hizukuri K, Odaka K, Toyozaki T, Komuro I. Pioglitazone, a peroxisome proliferator-activated receptor-γ activator, ameliorates experimental autoimmune myocarditis by modulating Th1/Th2 balance. J Mol Cell Cardiol. 2005;38:257–265. doi: 10.1016/j.yjmcc.2004.11.010.
    1. Haslbauer JD, Tzankov A, Mertz KD, Schwab N, Nienhold R, Twerenbold R, Leibundgut G, Stalder AK, Matter M, Glatz K. Characterisation of cardiac pathology in 23 autopsies of lethal COVID-19. J Pathol Clin Res. 2021;7:326–337. doi: 10.1002/cjp2.212.
    1. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, Chadwick DR, Clark R, Cosgrove C, Galloway J, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N Engl J Med. 2021;385:1172–1183. doi: 10.1056/NEJMoa2107659.
    1. Heidecker B, Williams SH, Jain K, Oleynik A, Patriki D, Kottwitz J, Berg J, Garcia JA, Baltensperger N, Lovrinovic M, et al. Virome sequencing in patients with myocarditis. Circ Heart Fail. 2020;13:e007103. doi: 10.1161/CIRCHEARTFAILURE.120.007103.
    1. Heymans S, Cooper LT. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol. 2022;19:75–77. doi: 10.1038/s41569-021-00662-w.
    1. Hou X, Chen G, Bracamonte-Baran W, Choi HS, Diny NL, Sung J, Hughes D, Won T, Wood MK, Talor MV, et al. The cardiac microenvironment instructs divergent monocyte fates and functions in myocarditis. Cell Rep. 2019;28:172–189.e7. doi: 10.1016/j.celrep.2019.06.007.
    1. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42:206. doi: 10.1093/eurheartj/ehaa190.
    1. Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L, Chen X, Yang PC, Zhang Y, Li M, et al. Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation. 2020;142:384–400. doi: 10.1161/CIRCULATIONAHA.119.043545.
    1. Hua X, Song J. Immune cell diversity contributes to the pathogenesis of myocarditis. Heart Fail Rev. 2019;24:1019–1030. doi: 10.1007/s10741-019-09799-w.
    1. Huang X, Gao Y, Hua F, Ying J. Differential diagnosis of fulminant myocarditis and acute coronary syndromes in the case of failure of coronary angiography: a case report. Front Cardiovasc Med. 2021;8:690974. doi: 10.3389/fcvm.2021.690974.
    1. Huang X, Sun Y, Su G, Li Y, Shuai X. Intravenous immunoglobulin therapy for acute myocarditis in children and adults. Int Heart J. 2019;60:359–365. doi: 10.1536/ihj.18-299.
    1. Huang X, Yan L, Meng J, Liu N, Zhu S, Jiang Z, Kou S, Feng T, Lin CP, Zhou B, et al. Genetic lineage tracing identifies cardiac mesenchymal-to-adipose transition in an arrhythmogenic cardiomyopathy model. Sci China Life Sci. 2023;66:51–66. doi: 10.1007/s11427-022-2176-6.
    1. Huber SA. Depletion of γδ+ T cells increases CD4+ FoxP3 (T regulatory) cell response in coxsackievirus B3-induced myocarditis. Immunology. 2009;127:567–576. doi: 10.1111/j.1365-2567.2008.03034.x.
    1. Javadi B, Sahebkar A. Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol Res. 2017;124:34–42. doi: 10.1016/j.phrs.2017.07.022.
    1. Jenke A, Holzhauser L, Löbel M, Savvatis K, Wilk S, Weithäuser A, Pinkert S, Tschöpe C, Klingel K, Poller W, et al. Adiponectin promotes coxsackievirus B3 myocarditis by suppression of acute anti-viral immune responses. Basic Res Cardiol. 2014;109:408. doi: 10.1007/s00395-014-0408-y.
    1. Jensen LD, Marchant DJ. Emerging pharmacologic targets and treatments for myocarditis. Pharmacol Ther. 2016;161:40–51. doi: 10.1016/j.pharmthera.2016.03.006.
    1. Ji C, Roy MD, Golas J, Vitsky A, Ram S, Kumpf SW, Martin M, Barletta F, Meier WA, Hooper AT, et al. Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clin Cancer Res. 2019;25:4735–4748. doi: 10.1158/1078-0432.CCR-18-4083.
    1. Jiang JG, Liu C, Cui GL, Chen C, Zuo HJ, Li R, Wang DW. Long term prognosis of fulminant myocarditis and predictors related to impaired cardiac function post discharge (in Chinese) Chin J Cardiol. 2022;50:263–269.
    1. Jiménez-Alejandre R, Ruiz-Fernández I, Martín P. Pathophysiology of immune checkpoint inhibitor-induced myocarditis. Cancers. 2022;14:4494. doi: 10.3390/cancers14184494.
    1. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–1755. doi: 10.1056/NEJMoa1609214.
    1. Kallwellis-Opara A, Dörner A, Poller WC, Noutsias M, Kühl U, Schultheiss HP, Pauschinger M. Autoimmunological features in inflammatory cardiomyopathy. Clin Res Cardiol. 2007;96:469480. doi: 10.1007/s00392-007-0524-x.
    1. Kanai-Yoshizawa S, Sugiyama Kato T, Mancini D, Marboe CC. Hypersensitivity myocarditis and outcome after heart transplantation. J Heart Lung Transplant. 2013;32:553–559. doi: 10.1016/j.healun.2013.01.1052.
    1. Kania G, Blyszczuk P, Stein S, Valaperti A, Germano D, Dirnhofer S, Hunziker L, Matter CM, Eriksson U. Heart-infiltrating prominin-1+/CD133+ Progenitor cells represent the cellular source of transforming growth factor β-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ Res. 2009;105:462–470. doi: 10.1161/CIRCRESAHA.109.196287.
    1. Karjalainen J, Heikkilä J. Incidence of three presentations of acute myocarditis in young men in military service. A 20-year experience. Eur Heart J. 1999;20:1120–1125. doi: 10.1053/euhj.1998.1444.
    1. Kawai C, Matsumori A, Fujiwara H. Myocarditis and dilated cardiomyopathy. Annu Rev Med. 1987;38:221–239. doi: 10.1146/annurev.me.38.020187.001253.
    1. Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13:460–469. doi: 10.1016/j.molmed.2007.09.002.
    1. Kawakami R, Sakamoto A, Kawai K, Gianatti A, Pellegrini D, Nasr A, Kutys B, Guo L, Cornelissen A, Mori M, et al. Pathological evidence for SARS-CoV-2 as a cause of myocarditis: JACC review topic of the week. J Am Coll Cardiol. 2021;77:314–325. doi: 10.1016/j.jacc.2020.11.031.
    1. Khairy P, Infante-Rivard C. Fulminant myocarditis. N Engl J Med. 2000;343:298–299. doi: 10.1056/NEJM200007273430412.
    1. Khawaja A, Bromage DI. The innate immune response in myocarditis. Int J Biochem Cell Biol. 2021;134:105973. doi: 10.1016/j.biocel.2021.105973.
    1. Klingel K, Schnorr JJ, Sauter M, Szalay G, Kandolf R. β2-microglobulin-associated regulation of interferon-γ and virus-specific immunoglobulin G confer resistance against the development of chronic coxsackievirus myocarditis. Am J Pathol. 2003;162:1709–1720. doi: 10.1016/S0002-9440(10)64305-2.
    1. Klingel K, Stephan S, Sauter M, Zell R, McManus BM, Bültmann B, Kandolf R. Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets. J Virol. 1996;70:8888–8895. doi: 10.1128/jvi.70.12.8888-8895.1996.
    1. Knowlton KU, Lim BK. Viral myocarditis. J Am Coll Cardiol. 2009;53:1227–1228. doi: 10.1016/j.jacc.2008.12.035.
    1. Kong Q, Wu W, Yang F, Liu Y, Xue Y, Gao M, Lai W, Pan X, Yan Y, Pang Y, et al. Increased expressions of IL-22 and Th22 cells in the coxsackievirus B3-induced mice acute viral myocarditis. Virol J. 2012;9:232. doi: 10.1186/1743-422X-9-232.
    1. Lasrado N, Borcherding N, Arumugam R, Starr TK, Reddy J. Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. iScience. 2022;25:103865. doi: 10.1016/j.isci.2022.103865.
    1. Lasrado N, Reddy J. An overview of the immune mechanisms of viral myocarditis. Rev Med Virol. 2020;30:1–14. doi: 10.1002/rmv.2131.
    1. Lassner D, Kühl U, Rohde M, Siegismund CS, Schultheiss HP. CCR5del32 polymorphism is a protective factor in non-ischemic cardiomyopathy. Int J Cardiol. 2014;173:561–562. doi: 10.1016/j.ijcard.2014.03.123.
    1. Law YM, Lal AK, Chen S, Čiháková D, Cooper LT, Jr., Deshpande S, Godown J, Grosse-Wortmann L, Robinson JD, Towbin JA. Diagnosis and management of myocarditis in children: a scientific statement from the American Heart Association. Circulation. 2021;144:e123. doi: 10.1161/CIR.0000000000001001.
    1. Lee JH, Kim TH, Park HE, Lee EG, Jung NC, Song JY, Seo H G, Seung KB, Chang K, Lim DS. Myosin-primed tolerogenic dendritic cells ameliorate experimental autoimmune myocarditis. Cardiovasc Res. 2014;101:203–210. doi: 10.1093/cvr/cvt246.
    1. Lehmann LH, Cautela J, Palaskas N, Baik AH, Meijers WC, Allenbach Y, Alexandre J, Rassaf T, Müller OJ, Aras M, et al. Clinical strategy for the diagnosis and treatment of immune checkpoint inhibitor-associated myocarditis: a narrative review. JAMA Cardiol. 2021;6:1329–1337. doi: 10.1001/jamacardio.2021.2241.
    1. Li HS, Ligons DL, Rose NR. Genetic complexity of autoimmune myocarditis. Autoimmun Rev. 2008;7:168–173. doi: 10.1016/j.autrev.2007.11.010.
    1. Li R, Wang H, Ma F, Cui G, Peng L, Li C, Zeng H, Marian AJ, Wang D. Widespread myocardial dysfunction in COVID-19 patients detected by myocardial strain imaging using 2-D speckle-tracking echocardiography. Acta Pharmacol Sin. 2021;42:1567–1574. doi: 10.1038/s41401-020-00595-z.
    1. Li S, Xu S, Li C, Ran X, Cui G, He M, Miao K, Zhao C, Yan J, Hui R, et al. A life support-based comprehensive treatment regimen dramatically lowers the in-hospital mortality of patients with fulminant myocarditis: a multiple center study. Sci China Life Sci. 2019;62:369–380. doi: 10.1007/s11427-018-9501-9.
    1. Liang W, Xie BK, Ding PW, Wang M, Yuan J, Cheng X, Liao Y H, Yu M. Sacubitril/valsartan alleviates experimental autoimmune myocarditis by inhibiting Th17 cell differentiation independently of the NLRP3 inflammasome pathway. Front Pharmacol. 2021;12:727838. doi: 10.3389/fphar.2021.727838.
    1. Lie JT. Myocarditis and endomyocardial biopsy in unexplained heart failure: a diagnosis in search of a disease. Ann Intern Med. 1988;109:525–528. doi: 10.7326/0003-4819-109-7-525.
    1. Liu P, Aitken K, Kong YY, Opavsky MA, Martino T, Dawood F, Wen WH, Kozieradzki I, Bachmaier K, Straus D, et al. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med. 2000;6:429–434. doi: 10.1038/74689.
    1. Liu W, Dienz O, Roberts B, Moussawi M, Rincon M, Huber S A. IL-21R expression on CD8+ T cells promotes CD8+ T cell activation in coxsackievirus B3 induced myocarditis. Exp Mol Pathol. 2012;92:327–333. doi: 10.1016/j.yexmp.2012.03.009.
    1. Liu Y, Zhu H, Su Z, Sun C, Yin J, Yuan H, Sandoghchian S, Jiao Z, Wang S, Xu H. IL-17 contributes to cardiac fibrosis following experimental autoimmune myocarditis by a PKCβ/Erk1/2/NF-κB-dependent signaling pathway. Int Immunol. 2012;24:605–612. doi: 10.1093/intimm/dxs056.
    1. Loebel M, Holzhauser L, Hartwig JA, Shukla PC, Savvatis K, Jenke A, Gast M, Escher F, Becker SC, Bauer S, et al. The forkhead transcription factor Foxo3 negatively regulates natural killer cell function and viral clearance in myocarditis. Eur Heart J. 2018;39:876–887. doi: 10.1093/eurheartj/ehx624.
    1. Long Q, Liao YH, Xie Y, Liang W, Cheng X, Yuan J, Yu M. Coxsackievirus B3 directly induced Th17 cell differentiation by inhibiting Nup98 expression in patients with acute viral myocarditis. Front Cell Infect Microbiol. 2016;6:171. doi: 10.3389/fcimb.2016.00171.
    1. Lowenstein CJ. Exogenous thioredoxin reduces inflammation in autoimmune myocarditis. Circulation. 2004;110:1178–1179. doi: 10.1161/01.CIR.0000143048.05940.0D.
    1. Lv K, Xu W, Wang C, Niki T, Hirashima M, Xiong S. Galectin-9 administration ameliorates CVB3 induced myocarditis by promoting the proliferation of regulatory T cells and alternatively activated Th2 cells. Clin Immunol. 2011;140:92–101. doi: 10.1016/j.clim.2011.03.017.
    1. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, Sullivan RJ, Damrongwatanasuk R, Chen CL, Gupta D, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71:1755–1764. doi: 10.1016/j.jacc.2018.02.037.
    1. Maisch B. Cardio-immunology of myocarditis: focus on immune mechanisms and treatment options. Front Cardiovasc Med. 2019;6:48. doi: 10.3389/fcvm.2019.00048.
    1. Mann DL. Tumor necrosis factor and viral myocarditis: the fine line between innate and inappropriate immune responses in the heart. Circulation. 2001;103:626–629. doi: 10.1161/01.CIR.103.5.626.
    1. Marchant DJ, McManus BM. Regulating viral myocarditis: allografted regulatory T cells decrease immune infiltration and viral load. Circulation. 2010;121:2609–2611. doi: 10.1161/CIRCULATIONAHA.110.960054.
    1. Marsland BJ, Nembrini C, Grun K, Reissmann R, Kurrer M, Leipner C, Kopf M. TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-θ signaling and promote autoimmune myocarditis. J Immunol. 2007;178:3466–3473. doi: 10.4049/jimmunol.178.6.3466.
    1. Martino TA, Petric M, Brown M, Aitken K, Gauntt CJ, Richardson CD, Chow LH, Liu PP. Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor. Virology. 1998;244:302–314. doi: 10.1006/viro.1998.9122.
    1. Mason J. Myocarditis and dilated cardiomyopathy: an inflammatory link. Cardiovasc Res. 2003;60:5–10. doi: 10.1016/S0008-6363(03)00437-1.
    1. Mason JW, O’Connell JB, Herskowitz A, Rose NR, McManus B M, Billingham ME, Moon TE. A clinical trial of immunosuppressive therapy for myocarditis. N Engl J Med. 1995;333:269–275. doi: 10.1056/NEJM199508033330501.
    1. Massilamany C, Gangaplara A, Steffen D, Reddy J. Identification of novel mimicry epitopes for cardiac myosin heavy chain-α that induce autoimmune myocarditis in A/J mice. Cell Immunol. 2011;271:438–449. doi: 10.1016/j.cellimm.2011.08.013.
    1. Massilamany C, Huber SA, Cunningham MW, Reddy J. Relevance of molecular mimicry in the mediation of infectious myocarditis. J Cardiovasc Trans Res. 2014;7:165–171. doi: 10.1007/s12265-013-9519-3.
    1. Matsumoto Y, Park IK, Kohyama K. B-cell epitope spreading is a critical step for the switch from C-protein-induced myocarditis to dilated cardiomyopathy. Am J Pathol. 2007;170:43–51. doi: 10.2353/ajpath.2007.060544.
    1. McCarthy RE, Boehmer JP, Hruban RH, Hutchins GM, Kasper E K, Hare JM, Baughman KL. Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med. 2000;342:690–695. doi: 10.1056/NEJM200003093421003.
    1. Medzhitov R, Janeway C., Jr. Innate immunity. N Engl J Med. 2000;343:338–344. doi: 10.1056/NEJM200008033430506.
    1. Mele D, Flamigni F, Rapezzi C, Ferrari R. Myocarditis in COVID-19 patients: current problems. Intern Emerg Med. 2021;16:1123–1129. doi: 10.1007/s11739-021-02635-w.
    1. Melillo F, Napolano A, Loffi M, Regazzoni V, Boccellino A, Danzi GB, Cappelletti AM, Rovere-Querini P, Landoni G, Ingallina G, et al. Myocardial injury in patients with SARS-CoV-2 pneumonia: pivotal role of inflammation in COVID-19. Eur J Clin Invest. 2022;52:e13703. doi: 10.1111/eci.13703.
    1. Montero S, Abrams D, Ammirati E, Huang F, Donker DW, Hekimian G, Garcia-Garcia C, Bayes-Genis A, Combes A, Schmidt M. Fulminant myocarditis in adults: a narrative review. J Geriatr Cardiol. 2022;19:137–151.
    1. Moslehi, J., Lichtman, A.H., Sharpe, A.H., Galluzzi, L., and Kitsis, R.N. (2021). Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. J Clin Invest 131.
    1. Müller I, Janson L, Sauter M, Pappritz K, Linthout SV, Tschöpe C, Klingel K. Myeloid-derived suppressor cells restrain natural killer cell activity in acute Coxsackievirus B3-induced myocarditis. Viruses. 2021;13:889. doi: 10.3390/v13050889.
    1. Müller, I., Vogl, T., Pappritz, K., Miteva, K., Savvatis, K., Rohde, D., Most, P., Lassner, D., Pieske, B., Kühl, U., et al. (2017). Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in Coxsackievirus B3-induced myocarditis. Circ Heart Fail 10.
    1. Muñoz-Rojas AR, Mathis D. Tissue regulatory T cells: regulatory chameleons. Nat Rev Immunol. 2021;21:597–611. doi: 10.1038/s41577-021-00519-w.
    1. Myers, J.M., Cooper, L.T., Kem, D.C., Stavrakis, S., Kosanke, S.D., Shevach, E.M., Fairweather, D.L., Stoner, J.A., Cox, C.J., and Cunningham, M.W. (2016). Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1.
    1. Naghashzadeh F, Shafaghi S, Dorudinia A, Naji SA, Marjani M, Amin A, Mohamadifar A, Noorali S, Kashani BS. Myocarditis following rAd26 and rAd5 vector-based COVID-19 vaccine: case report. ESC Heart Fail. 2022;9:1483–1486. doi: 10.1002/ehf2.13821.
    1. Nahrendorf M, Swirski FK. Monocyte and macrophage heterogeneity in the heart. Circ Res. 2013;112:1624–1633. doi: 10.1161/CIRCRESAHA.113.300890.
    1. Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res. 2016;119:414–417. doi: 10.1161/CIRCRESAHA.116.309194.
    1. Narducci ML, La Rosa G, Pinnacchio G, Inzani F, d’Amati G, Perna F, Bencardino G, D’Amario D, Pieroni M, Dello Russo A, et al. Assessment of patients presenting with life-threatening ventricular arrhythmias and suspected myocarditis: the key role of endomyocardial biopsy. Heart Rhythm. 2021;18:907–915. doi: 10.1016/j.hrthm.2021.01.025.
    1. Nguyen LS, Bretagne M, Arrondeau J, Zahr N, Ederhy S, Abbar B, Pinna B, Allenbach Y, Mira JP, Moslehi J, et al. Reversal of immune-checkpoint inhibitor fulminant myocarditis using personalized-dose-adjusted abatacept and ruxolitinib: proof of concept. J Immunother Cancer. 2022;10:e004699. doi: 10.1136/jitc-2022-004699.
    1. Nguyen LS, Cooper LT, Kerneis M, Funck-Brentano C, Silvain J, Brechot N, Hekimian G, Ammirati E, Ben M’Barek B, Redheuil A, et al. Systematic analysis of drug-associated myocarditis reported in the World Health Organization pharmacovigilance database. Nat Commun. 2022;13:25. doi: 10.1038/s41467-021-27631-8.
    1. Nie X, Li H, Wang J, Cai Y, Fan J, Dai B, Chen C, Wang D W. Expression profiles and potential functions of long non-coding RNAs in the heart of mice with coxsackie B3 virus-induced myocarditis. Front Cell Infect Microbiol. 2021;11:704919. doi: 10.3389/fcimb.2021.704919.
    1. Nindl V, Maier R, Ratering D, De Giuli R, Züst R, Thiel V, Scandella E, Di Padova F, Kopf M, Rudin M, et al. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol. 2012;42:2311–2321. doi: 10.1002/eji.201142209.
    1. Niu L, Li C, Wang Z, Xu H, An X. Effects of the MAPK pathway and the expression of CAR in a murine model of viral myocarditis. Exp Ther Med. 2017;13:230–234. doi: 10.3892/etm.2016.3909.
    1. Noji Y. Anakinra in fulminant myocarditis: targeting interleukin-1 and the inflammasome formation. Crit Care Med. 2016;44:1630–1631. doi: 10.1097/CCM.0000000000001769.
    1. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41:694–707. doi: 10.1016/j.immuni.2014.10.008.
    1. Nussinovitch U, Shoenfeld Y. The clinical and diagnostic significance of anti-myosin autoantibodies in cardiac disease. Clin Rev Allerg Immunol. 2013;44:98–108. doi: 10.1007/s12016-010-8229-8.
    1. Okor I, Bob-Manuel T, Price J, Sleem A, Amoran O, Kelly J, Ekerete MF, Bamgbose MO, Bolaji OA, Krim SR. COVID-19 myocarditis: an emerging clinical conundrum. Curr Probl Cardiol. 2022;47:101268. doi: 10.1016/j.cpcardiol.2022.101268.
    1. Oprinca GC, Oprinca-Muja LA, Mihalache M, Birlutiu RM, Birlutiu V. Is SARS-CoV-2 directly responsible for cardiac injury? Clinical aspects and postmortem histopathologic and immunohistochemical analysis. Microorganisms. 2022;10:1258. doi: 10.3390/microorganisms10071258.
    1. Pappritz K, Savvatis K, Miteva K, Kerim B, Dong F, Fechner H, Müller I, Brandt C, Lopez B, González A, et al. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis. FASEB J. 2018;32:6066–6078. doi: 10.1096/fj.201701408R.
    1. Patel RP, Parikh R, Gunturu KS, Tariq RZ, Dani SS, Ganatra S, Nohria A. Cardiotoxicity of immune checkpoint inhibitors. Curr Oncol Rep. 2021;23:79. doi: 10.1007/s11912-021-01070-6.
    1. Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, Watkinson P, Khunti K, Harnden A, Coupland CAC, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med. 2022;28:410–422. doi: 10.1038/s41591-021-01630-0.
    1. Peretto G, Sala S, Rizzo S, De Luca G, Campochiaro C, Sartorelli S, Benedetti G, Palmisano A, Esposito A, Tresoldi M, et al. Arrhythmias in myocarditis: State of the art. Heart Rhythm. 2019;16:793–801. doi: 10.1016/j.hrthm.2018.11.024.
    1. Perez Y, Levy ER, Joshi AY, Virk A, Rodriguez-Porcel M, Johnson M, Roellinger D, Vanichkachorn G, Charles Huskins W, Swift MD. Myocarditis following coronavirus disease 2019 mRNA vaccine: a case series and incidence rate determination. Clin Infect Dis. 2022;75:e749–e754. doi: 10.1093/cid/ciab926.
    1. Peron D, Prates RA, Antonio EL, Teixeira ILA, Oliveira HA, Mansano BSDM, Bergamo A, Almeida DR, Dariolli R, Tucci P JF, et al. A common oral pathogen Porphyromonas gingivalis induces myocarditis in rats. J Clinic Periodontol. 2022;49:506–517. doi: 10.1111/jcpe.13595.
    1. Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis—diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12:670–680. doi: 10.1038/nrcardio.2015.108.
    1. Pussadhamma B, Tipparot T, Chaosuwannakit N, Mahakkanukrauh A, Suwannaroj S, Nanagara R, Foocharoen C. Clinical outcomes of myocarditis after moderate-dose steroid therapy in systemic sclerosis: a pilot study. Int J Rheumatol. 2020;2020:8884442. doi: 10.1155/2020/8884442.
    1. Rahnefeld A, Ebstein F, Albrecht N, Opitz E, Kuckelkorn U, Stangl K, Rehm A, Kloetzel PM, Voigt A. Antigen-presentation capacity of dendritic cells is impaired in ongoing enterovirus myocarditis. Eur J Immunol. 2011;41:2774–2781. doi: 10.1002/eji.201041039.
    1. Rikhi R, Karnuta J, Hussain M, Collier P, Funchain P, Tang WHW, Chan TA, Moudgil R. Immune checkpoint inhibitors mediated lymphocytic and giant cell myocarditis: uncovering etiological mechanisms. Front Cardiovasc Med. 2021;8:721333. doi: 10.3389/fcvm.2021.721333.
    1. Rischpler C, Rassaf T, Umutlu L, Herrmann K, Schlosser TW, Totzeck M. Imaging the inflammatory response in checkpoint inhibition myocarditis. J Nucl Med. 2022;63:14–16. doi: 10.2967/jnumed.121.262301.
    1. Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol. 2020;115:31. doi: 10.1007/s00395-020-0791-5.
    1. Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol. 2020;319:H1059–H1068. doi: 10.1152/ajpheart.00681.2020.
    1. Rose NR. Viral damage or ‘molecular mimicry’—placing the blame in myocarditis. Nat Med. 2000;6:631–632. doi: 10.1038/76199.
    1. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol. 2010;10:514–526. doi: 10.1038/nri2802.
    1. Sagar S, Liu PP, Cooper LT., Jr. Myocarditis. Lancet. 2012;379:738–747. doi: 10.1016/S0140-6736(11)60648-X.
    1. Saji T, Matsuura H, Hasegawa K, Nishikawa T, Yamamoto E, Ohki H, Yasukochi S, Arakaki Y, Joo K, Nakazawa M. Comparison of the clinical presentation, treatment, and outcome of fulminant and acute myocarditis in children. Circ J. 2012;76:1222–1228. doi: 10.1253/circj.CJ-11-1032.
    1. Salem JE, Allenbach Y, Vozy A, Brechot N, Johnson DB, Moslehi JJ, Kerneis M. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N Engl J Med. 2019;380:2377–2379. doi: 10.1056/NEJMc1901677.
    1. Satoh M, Nakamura M, Akatsu T, Iwasaka J, Shimoda Y, Segawa I, Hiramori K. Expression of Toll-like receptor 4 is associated with enteroviral replication in human myocarditis. Clin Sci. 2003;104:577–584. doi: 10.1042/CS20020263.
    1. Scatularo CE, Ballesteros OA, Saldarriaga C, Mendoza I, Wyss F, Liprandi AS, Munera A, Liendro MC, Baranchuk A. Zika & heart: A systematic review. Trends Cardiovasc Med. 2022;32:52–58. doi: 10.1016/j.tcm.2020.11.003.
    1. Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A, DeLaughter DM, Ng B, Patone G, Chow K, Khin E, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110–115. doi: 10.1038/nature24676.
    1. Seko Y, Yagita H, Okumura K, Azuma M, Nagai R. Roles of programmed death-1 (PD-1)/PD-1 ligands pathway in the development of murine acute myocarditis caused by coxsackievirus B3. Cardiovasc Res. 2007;75:158–167. doi: 10.1016/j.cardiores.2007.03.012.
    1. Selinka HC, Wolde A, Sauter M, Kandolf R, Klingel K. Virus-receptor interactions of coxsackie B viruses and their putative influence on cardiotropism. Med Microbiol Immunol. 2004;193:127–131. doi: 10.1007/s00430-003-0193-y.
    1. Sharma AN, Stultz JR, Bellamkonda N, Amsterdam EA. Fulminant myocarditis: epidemiology, pathogenesis, diagnosis, and management. Am J Cardiol. 2019;124:1954–1960. doi: 10.1016/j.amjcard.2019.09.017.
    1. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi: 10.1126/science.aaa8172.
    1. Shen Y, Xu W, Chu YW, Wang Y, Liu QS, Xiong SD. Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis. J Virol. 2004;78:12548–12556. doi: 10.1128/JVI.78.22.12548-12556.2004.
    1. Shi Y, Chen C, Lisewski U, Wrackmeyer U, Radke M, Westermann D, Sauter M, Tschöpe C, Poller W, Klingel K, et al. Cardiac deletion of the Coxsackievirus-adenovirus receptor abolishes coxsackievirus B3 infection and prevents myocarditis in vivo. J Am Coll Cardiol. 2009;53:1219–1226. doi: 10.1016/j.jacc.2008.10.064.
    1. Shi Y, Fukuoka M, Li G, Liu Y, Chen M, Konviser M, Chen X, Opavsky MA, Liu PP. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor β-coxsackie-adenovirus receptor pathway. Circulation. 2010;121:2624–2634. doi: 10.1161/CIRCULATIONAHA.109.893248.
    1. Shioji K, Kishimoto C, Sasayama S. Fc receptor-mediated inhibitory effect of immunoglobulin therapy on autoimmune giant cell myocarditis: concomitant suppression of the expression of dendritic cells. Circ Res. 2001;89:540–546. doi: 10.1161/hh1801.096263.
    1. Sieweke JT, Akin M, Stetskamp S, Riehle C, Jonigk D, Flierl U, Pfeffer TJ, Hirsch V, Dutzmann J, Hoeper MM, et al. Mechanical circulatory support in refractory cardiogenic shock due to influenza virus-related myocarditis. Eur Respir J. 2020;56:2000925. doi: 10.1183/13993003.00925-2020.
    1. Sinnecker D, Laugwitz KL, Moretti A. Extending human induced pluripotent stem cell technology to infectious diseases: new model for viral myocarditis. Circ Res. 2014;115:537–539. doi: 10.1161/CIRCRESAHA.114.304786.
    1. Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, Cooper LT, Jr., Chahal CAA. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17:1463–1471. doi: 10.1016/j.hrthm.2020.05.001.
    1. Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines. 2021;20:23–44. doi: 10.1080/14760584.2021.1875824.
    1. Sonderegger I, Röhn T, Kurrer M, Iezzi G, Zou Y, Kastelein R, Bachmann M, Kopf M. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol. 2006;36:2849–2856. doi: 10.1002/eji.200636484.
    1. Sury K, Perazella MA, Shirali AC. Cardiorenal complications of immune checkpoint inhibitors. Nat Rev Nephrol. 2018;14:571–588. doi: 10.1038/s41581-018-0035-1.
    1. Tajiri K, Yonebayashi S, Li S, Ieda M. Immunomodulatory role of tenascin-C in myocarditis and inflammatory cardiomyopathy. Front Immunol. 2021;12:624703. doi: 10.3389/fimmu.2021.624703.
    1. Takehana H, Inomata T, Kuwao S, Nakahata J, Sasaki T, Nishii M, Kurokawa S, Izumi T. Recurrent fulminant viral myocarditis with a short clinical course. Circ J. 2003;67:646–648. doi: 10.1253/circj.67.646.
    1. Tarrio ML, Grabie N, Bu D, Sharpe AH, Lichtman AH. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol. 2012;188:4876–4884. doi: 10.4049/jimmunol.1200389.
    1. Tedeschi A, Airaghi L, Giannini S, Ciceri L, Massari FM. High-dose intravenous immunoglobulin in the treatment of acute myocarditis. A case report and review of the literature. J Intern Med. 2002;251:169–173. doi: 10.1046/j.1365-2796.2002.00929.x.
    1. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95:834–847. doi: 10.1002/ajh.25829.
    1. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;21:626–636. doi: 10.1038/s41577-021-00592-1.
    1. Triantafilou K, Orthopoulos G, Vakakis E, Ahmed MAE, Golenbock DT, Lepper PM, Triantafilou M. Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell Microbiol. 2005;7:1117–1126. doi: 10.1111/j.1462-5822.2005.00537.x.
    1. Tschöpe C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, Hare JM, Heidecker B, Heymans S, Hübner N, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021;18:169–193. doi: 10.1038/s41569-020-00435-x.
    1. Tschöpe C, Cooper LT, Torre-Amione G, Van Linthout S. Management of myocarditis-related cardiomyopathy in adults. Circ Res. 2019;124:1568–1583. doi: 10.1161/CIRCRESAHA.118.313578.
    1. Valaperti A, Nishii M, Liu Y, Yang H, Naito K, Liu PP, Eriksson U. The adapter protein c-Cbl-associated protein (CAP) protects from acute CVB3-mediated myocarditis through stabilization of type I interferon production and reduced cytotoxicity. Basic Res Cardiol. 2014;109:411. doi: 10.1007/s00395-014-0411-3.
    1. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, Engel JJ, Wiersinga WJ, Vlaar APJ, Shankar-Hari M, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28:39–50. doi: 10.1038/s41591-021-01643-9.
    1. Van der Borght K, Scott CL, Martens L, Sichien D, Van Isterdael G, Nindl V, Saeys Y, Boon L, Ludewig B, Gillebert TC, et al. Myocarditis elicits dendritic cell and monocyte infiltration in the heart and self-antigen presentation by conventional type 2 dendritic cells. Front Immunol. 2018;9:2714. doi: 10.3389/fimmu.2018.02714.
    1. Van Linthout S, Klingel K, Tschöpe C. SARS-CoV-2-related myocarditis-like syndromes Shakespeare’s question: what’s in a name? Eur J Heart Fail. 2020;22:922–925. doi: 10.1002/ejhf.1899.
    1. Verma AK, Olagoke O, Moreno JD, Rezaee N, Ma P, Liu J, Javaheri A, Lavine K, Masood MF, Lin CY. SARS-CoV-2-associated myocarditis: a case of direct myocardial injury. Circ Heart Fail. 2022;15:e008273. doi: 10.1161/CIRCHEARTFAILURE.120.008273.
    1. Veronese G, Ammirati E. Differences in clinical presentation and outcome between immune checkpoint inhibitor-associated myocarditis and classical acute myocarditis: Same disease, distinct challenges to face. Int J Cardiol. 2019;296:124–126. doi: 10.1016/j.ijcard.2019.08.038.
    1. Veronese G, Ammirati E, Chen C, Klingel K, Suzuki M, Okumura T, Maisch B, Zuo H, Ni L, Jiang J, et al. Management perspectives from the 2019 Wuhan international workshop on fulminant myocarditis. Int J Cardiol. 2021;324:131–138. doi: 10.1016/j.ijcard.2020.10.063.
    1. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. doi: 10.1016/j.clim.2020.108480.
    1. von Bernuth H, Picard C, Puel A, Casanova JL. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans. Eur J Immunol. 2012;42:3126–3135. doi: 10.1002/eji.201242683.
    1. Wagner JUG, Bojkova D, Shumliakivska M, Luxán G, Nicin L, Aslan GS, Milting H, Kandler JD, Dendorfer A, Heumueller A W, et al. Increased susceptibility of human endothelial cells to infections by SARS-CoV-2 variants. Basic Res Cardiol. 2021;116:42. doi: 10.1007/s00395-021-00882-8.
    1. Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Sig Transduct Target Ther. 2021;6:94. doi: 10.1038/s41392-020-00443-w.
    1. Wang C, Bao Q, Hou C, Sun M, Song X, Cao S, Wang X, Shen Q, Zhao Y, Wang D. Mono-macrophage-derived MANF alleviates bacterial myocarditis by inhibiting NF-kappaB activation and myocardial inflammation. Inflammation. 2021;44:1916–1926. doi: 10.1007/s10753-021-01469-0.
    1. Wang D, Li S, Jiang J, Yan J, Zhao C, Wang Y, Ma Y, Zeng H, Guo X, Wang H, et al. Chinese society of cardiology expert consensus statement on the diagnosis and treatment of adult fulminant myocarditis. Sci China Life Sci. 2019;62:187–202. doi: 10.1007/s11427-018-9385-3.
    1. Wang DW, Hui RT. Actively promote and apply the China’s regimen for treatments of fulminant myocarditis to save more lives (in Chinese) Chin J Cardiol. 2022;50:212–218.
    1. Wang J, He M, Li H, Chen Y, Nie X, Cai Y, Xie R, Li L, Chen P, Sun Y, et al. Soluble ST2 is a sensitive and specific biomarker for fulminant myocarditis. J Am Heart Assoc. 2022;11:e024417. doi: 10.1161/JAHA.121.024417.
    1. Wang X, Bu X, Wei L, Liu J, Yang D, Mann DL, Ma A, Hayashi T. Global, regional, and national burden of myocarditis from 1990 to 2017: a systematic analysis based on the Global Burden of Disease Study 2017. Front Cardiovasc Med. 2021;8:692990. doi: 10.3389/fcvm.2021.692990.
    1. Wang Y, Zhu K, Dai R, Li R, Li M, Lv X, Yu Q. Specific interleukin-1 inhibitors, specific interleukin-6 inhibitors, and GM-CSF blockades for COVID-19 (at the edge of sepsis): a systematic review. Front Pharmacol. 2021;12:804250. doi: 10.3389/fphar.2021.804250.
    1. Wei SC, Meijers WC, Axelrod ML, Anang NAAS, Screever EM, Wescott EC, Johnson DB, Whitley E, Lehmann L, Courand PY, et al. A genetic mouse model recapitulates immune checkpoint inhibitor-associated myocarditis and supports a mechanism-based therapeutic intervention. Cancer Discov. 2021;11:614–625. doi: 10.1158/-20-0856.
    1. Weinstein C, Fenoglio JJ. Myocarditis. Hum Pathol. 1987;18:613–618. doi: 10.1016/S0046-8177(87)80362-3.
    1. Weitsman T, Weisz G, Keren A, Hasin T. Prompt benefit of early immunosuppressive therapy in acute lymphocytic myocarditis with persistent heart failure. Clin Res Cardiol. 2016;105:794–796. doi: 10.1007/s00392-016-0985-x.
    1. Winter MP, Sulzgruber P, Koller L, Bartko P, Goliasch G, Niessner A. Immunomodulatory treatment for lymphocytic myocarditis—a systematic review and meta-analysis. Heart Fail Rev. 2018;23:573–581. doi: 10.1007/s10741-018-9709-9.
    1. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, Grinberg T, Auster O, Dagan N, Balicer RD, et al. Myocarditis after COVID-19 vaccination in a large health care organization. N Engl J Med. 2021;385:2132–2139. doi: 10.1056/NEJMoa2110737.
    1. Wu L, Ong SF, Talor MV, Barin JG, Baldeviano GC, Kass DA, Bedja D, Zhang H, Sheikh A, Margolick JB, et al. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy. J Exp Med. 2014;211:1449–1464. doi: 10.1084/jem.20132126.
    1. Wu L, Wang W, Leng Q, Tang N, Zhou N, Wang Y, Wang D W. Focus on autoimmune myocarditis in Graves’ disease: a case-based review. Front Cardiovasc Med. 2021;8:678645. doi: 10.3389/fcvm.2021.678645.
    1. Wu L, Woudstra L, Dam TA, Germans T, van Rossum AC, Niessen HWM, Krijnen PAJ. Electrocardiographic changes are strongly correlated with the extent of cardiac inflammation in mice with Coxsackievirus B3-induced viral myocarditis. Cardiovasc Pathol. 2021;54:107367. doi: 10.1016/j.carpath.2021.107367.
    1. Wu X, Meng Y, Wang C, Yue Y, Dong C, Xiong S. Semaphorin7A aggravates coxsackievirusB3-induced viral myocarditis by increasing α1β1-integrin macrophages and subsequent enhanced inflammatory response. J Mol Cell Cardiol. 2018;114:48–57. doi: 10.1016/j.yjmcc.2017.11.001.
    1. Wu Y, Zheng Z, Cao X, Yang Q, Norton V, Adini A, Maiti AK, Adini I, Wu H. RIP1/RIP3/MLKL mediates myocardial function through necroptosis in experimental autoimmune myocarditis. Front Cardiovasc Med. 2021;8:696362. doi: 10.3389/fcvm.2021.696362.
    1. Xiao L, Wu D, Sun Y, Hu D, Dai J, Chen Y, Wang D. Whole-exome sequencing reveals genetic risks of early-onset sporadic dilated cardiomyopathy in the Chinese Han population. Sci China Life Sci. 2022;65:770–780. doi: 10.1007/s11427-020-1951-4.
    1. Xie Y, Chen R, Zhang X, Chen P, Liu X, Xie Y, Yu Y, Yang Y, Zou Y, Ge J, et al. The role of Th17 cells and regulatory T cells in Coxsackievirus B3-induced myocarditis. Virology. 2011;421:78–84. doi: 10.1016/j.virol.2011.09.006.
    1. Xu D, Wang P, Yang J, Qian Q, Li M, Wei L, Xu W. Gr-1+ cells other than Ly6G+ neutrophils limit virus replication and promote myocardial inflammation and fibrosis following Coxsackievirus B3 infection of mice. Front Cell Infect Microbiol. 2018;8:157. doi: 10.3389/fcimb.2018.00157.
    1. Xuan Y, Chen C, Wen Z, Wang DW. The roles of cardiac fibroblasts and endothelial cells in myocarditis. Front Cardiovasc Med. 2022;9:882027. doi: 10.3389/fcvm.2022.882027.
    1. Xue YC, Ng CS, Mohamud Y, Fung G, Liu H, Bahreyni A, Zhang J, Luo H. FUS/TLS suppresses enterovirus replication and promotes antiviral innate immune responses. J Virol. 2021;95:e00304–21. doi: 10.1128/JVI.00304-21.
    1. Yacoub S, Wertheim H, Simmons CP, Screaton G, Wills B. Cardiovascular manifestations of the emerging Dengue pandemic. Nat Rev Cardiol. 2014;11:335–345. doi: 10.1038/nrcardio.2014.40.
    1. Yajima T. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection. Future Microbiol. 2011;6:551–566. doi: 10.2217/fmb.11.40.
    1. Yajima T, Knowlton KU. Viral myocarditis. Circulation. 2009;119:2615–2624. doi: 10.1161/CIRCULATIONAHA.108.766022.
    1. Yang F, Mo W, Tan B, Wei X, Wang H. Increased frequency of follicular helper T cells in mice viral myocarditis is relevant with anti-ANT antoantibody. Virol J. 2015;12:20. doi: 10.1186/s12985-015-0257-9.
    1. Yang F, Wei X, Liang W, Mo W, Tan B, Wang H. A critical role for IL-21 receptor signaling in the Coxsackievirus B3-induced myocarditis. Inflammation. 2017;40:1428–1435. doi: 10.1007/s10753-017-0586-5.
    1. Yang F, Wu W F, Yan Y L, Pang Y, Kong Q, Huang Y L. Expression of IL-23/Th17 pathway in a murine model of Coxsackie virus B3-induced viral myocarditis. Virol J. 2011;8:301. doi: 10.1186/1743-422X-8-301.
    1. Yang J, Zhang H, Wang X, Guo J, Wei L, Song Y, Luo Y, Zhao Y X, Subramaniam M, Spelsberg TC, et al. Kruppel-like factor 10 protects against acute viral myocarditis by negatively regulating cardiac MCP-1 expression. Cell Mol Immunol. 2021;18:2236–2248. doi: 10.1038/s41423-020-00539-x.
    1. Yang Y, Li W, You B, Zhou C. Advances in cell death mechanisms involved in viral myocarditis. Front Cardiovasc Med. 2022;9:968752. doi: 10.3389/fcvm.2022.968752.
    1. Yeung C, Mendoza I, Echeverria LE, Baranchuk A. Chagas’ cardiomyopathy and Lyme carditis: lessons learned from two infectious diseases affecting the heart. Trends Cardiovasc Med. 2021;31:233–239. doi: 10.1016/j.tcm.2020.04.004.
    1. Yuan J, Liu Z, Lim T, Zhang H, He J, Walker E, Shier C, Wang Y, Su Y, Sall A, et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ Res. 2009;104:628–638. doi: 10.1161/CIRCRESAHA.108.192179.
    1. Yuan J, Yu M, Lin QW, Cao AL, Yu X, Dong JH, Wang JP, Zhang JH, Wang M, Guo HP, et al. Neutralization of IL-17 inhibits the production of anti-ANT autoantibodies in CVB3-induced acute viral myocarditis. Int Immunopharmacol. 2010;10:272–276. doi: 10.1016/j.intimp.2009.11.010.
    1. Yuan Z, Liu Y, Liu Y, Zhang J, Kishimoto C, Wang Y, Ma A, Liu Z. Peroxisome proliferation-activated receptor-γ ligands ameliorate experimental autoimmune myocarditis. Cardiovasc Res. 2003;59:685–694. doi: 10.1016/S0008-6363(03)00457-7.
    1. Yue-Chun L, Gu XH, Li-Sha G, Zhou DP, Xing C, Guo XL, Pan LL, Song SY, Yu LL, Chen GY, et al. Vagus nerve plays a pivotal role in CD4+ T cell differentiation during CVB3-induced murine acute myocarditis. Virulence. 2021;12:360–376. doi: 10.1080/21505594.2020.1869384.
    1. Yuen S, Smith J, Caruso L, Balan M, Opavsky MA. The coxsackie-adenovirus receptor induces an inflammatory cardiomyopathy independent of viral infection. J Mol Cell Cardiol. 2011;50:826–840. doi: 10.1016/j.yjmcc.2011.02.011.
    1. Zaman R, Hamidzada H, Epelman S. Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium. Curr Opin Immunol. 2021;68:54–63. doi: 10.1016/j.coi.2020.09.005.
    1. Zhang H, Yue Y, Sun T, Wu X, Xiong S. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep. 2017;7:42162. doi: 10.1038/srep42162.
    1. Zhang J, Hang W, Hui R, Zhao Q, Desai SS. China’s treatment regimen for fulminant myocarditis is bringing wonderful achievement to the world. Sci China Life Sci. 2019;62:282–284. doi: 10.1007/s11427-018-9445-2.
    1. Zhang Q, Li D, Dong X, Zhang X, Liu J, Peng L, Meng B, Hua Q, Pei X, Zhao L, et al. LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. Sci China Life Sci. 2022;65:1198–1212. doi: 10.1007/s11427-021-1982-8.
    1. Zhang Y, Zhang M, Li X, Tang Z, He L, Lv K. Expansion of CD11b+Ly-6C+ myeloid-derived suppressor cells (MDSCs) driven by galectin-9 attenuates CVB3-induced myocarditis. Mol Immunol. 2017;83:62–71. doi: 10.1016/j.molimm.2017.01.013.
    1. Zhao L, Fu Z. Roles of host immunity in viral myocarditis and dilated cardiomyopathy. J Immunol Res. 2018;2018:1–12.
    1. Zhou N, Zhao Y, Jiang J, Shen L, Li J, Wan J, Ma X, Zhang J, Ammirati E, Wang DW. Impact of mechanical circulatory support and immunomodulation therapy on outcome of patients with fulminant myocarditis: Chinese registry of fulminant myocarditis. Sig Transduct Target Ther. 2021;6:350. doi: 10.1038/s41392-021-00700-6.
    1. Zhou YH, Zhao X, Guo YY, Yang JM, Dai DP, Rui ZA, Du Y, Pang S, Miao GR, Wang XF, et al. Early effect of extra-corporeal membrane oxygenation and factors related to early outcome in adult patients with fulminant myocarditis (in Chinese) Chin J Cardiol. 2022;50:270–276.
    1. Zhu H, Galdos FX, Lee D, Waliany S, Huang YV, Ryan J, Dang K, Neal JW, Wakelee HA, Reddy SA, et al. Identification of pathogenic immune cell subsets associated with checkpoint inhibitor-induced myocarditis. Circulation. 2022;146:316–335. doi: 10.1161/CIRCULATIONAHA.121.056730.
    1. Zhu H, Lou C, Liu P. Interleukin-27 ameliorates Coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells. Virol J. 2015;12:189. doi: 10.1186/s12985-015-0418-x.
    1. Zhu, M., Yang, H., Lu, Y., Yang, H., Tang, Y., Li, L., Zhu, Y., and Yuan, J. (2021). Cardiac ectopic lymphoid follicle formation in viral myocarditis involving the regulation of podoplanin in Th17 cell differentiation. FASEB J 35.

Source: PubMed

3
Abonnieren