Physicochemical Characterization of Interactions between Blueberry Polyphenols and Food Proteins from Dairy and Plant Sources

Bianca Chima, Paul Mathews, Scott Morgan, Sarah A Johnson, Charlene B Van Buiten, Bianca Chima, Paul Mathews, Scott Morgan, Sarah A Johnson, Charlene B Van Buiten

Abstract

Polyphenols are widely known for their benefits to human health; however, dietary intake of this class of compounds is low in the United States due to low intake of fruits and vegetables. Dairy foods (i.e., milk, yogurt) have been shown to increase polyphenol bioavailability via protein-polyphenol interactions, which may have important implications for human health. Increasing consumer interest in sustainability and health has led to the introduction of a variety of novel plant-based proteins and related food products as dairy alternatives. This study compared whey, a popular dairy-based food protein, to pea and hemp proteins for their abilities to form complexes with polyphenols from blueberries, which are a widely consumed fruit in the US with demonstrated health effects. Physical and chemical characteristics of each protein extract in the presence and absence of blueberry polyphenols were investigated using a variety of spectroscopic methods. The influence of polyphenol complexation on protein digestion was also assessed in vitro. While all proteins formed complexes with blueberry polyphenols, the hemp and pea proteins demonstrated greater polyphenol binding affinities than whey, which may be due to observed differences in protein secondary structure. Polyphenol addition did not affect the digestion of any protein studied. Solution pH appeared to play a role in protein-polyphenol complex formation, which suggests that the effects observed in this model food system may differ from food systems designed to mimic other food products, such as plant-based yogurts. This study provides a foundation for exploring the effects of plant-based proteins on phytochemical functionality in complex, "whole food" matrices, and supports the development of plant-based dairy analogs aimed at increasing polyphenol stability and bioavailability.

Keywords: digestion; plant-based; polyphenol; protein; protein–polyphenol interaction; whey.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Intermolecular interactions between contents of commercial protein powders and powdered blueberries cause the formation of insoluble complexes. (A) Increasing turbidity of commercial protein solutions by blueberry powder points to nutrient interactions. Increases in turbidity exceed absorbance of blueberry-only control (A600 = 0.027). Values are expressed as mean ± SD. Asterisks (*) indicate significant differences (*** = p ≤ 0.001, **** = p ≤ 0.0001) based on two-way ANOVA with Tukey’s multiple comparisons. (B) Molecular weight profiles of each commercial protein powder in the absence or presence of powdered blueberries. Molecular weight is represented as kilodaltons (kDa).
Figure 2
Figure 2
Protein–polyphenol interactions driving increases in turbidity are pH-dependent. Values are expressed as mean ± SD. Different letters indicate significant differences (p < 0.05) based on two-way ANOVA with Tukey’s multiple comparisons.
Figure 3
Figure 3
Quenching of protein isolates by BPE. Fluorescence emission spectra (A) whey, (B) pea and (C) hemp as a function of BPE concentration. (D) Stern-Volmer plot of F0/F as a function of BPE for each protein isolate. (E) Double-log Modified Stern-Volmer plot.
Figure 4
Figure 4
Structural analysis of protein isolates in the presence and absence of BPE at pH 6.8. (A) Far-UV spectra of all proteins demonstrate differences in secondary structure between all proteins, but no change upon the addition of BPE. (B) Near-UV spectra suggest that all proteins do not have tertiary structure. (C) Calculation of relative helicity reveals the helical conformation of whey and hemp, but not pea protein. Helicity is not affected by the addition of BPE. Values are expressed as mean ± SD. Different letters indicate significant differences (p < 0.05) based on two-way ANOVA with Tukey’s multiple comparisons.
Figure 5
Figure 5
Comparison of free amino acids in solution before and after in vitro digestion in the presence or absence of BPE. Data are expressed as mM leucine equivalents as determined by a standard curve. Values are expressed as mean ± SD. Asterisks (*) indicate significant differences (** = p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 0.0001) based on two-way ANOVA with Šídák’s multiple comparisons.

References

    1. Pietta P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000;63:1035–1042. doi: 10.1021/np9904509.
    1. Del Bo C., Bernardi S., Marino M., Porrini M., Tucci M., Guglielmetti S., Cherubini A., Carrieri B., Kirkup B., Kroon P., et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients. 2019;11:1355.
    1. Burton-Freeman B.M., Guenther P.M., Oh M., Stuart D., Jensen H.H. Assessing the consumption of berries and associated factors in the United States using the National Health and Nutrition Examination Survey (NHANES), 2007-2012. Food Funct. 2018;9:1009–1016. doi: 10.1039/C7FO01650F.
    1. Kim K., Vance T.M., Chun O.K. Estimated intake and major food sources of flavonoids among US adults: Changes between 1999–2002 and 2007–2010 in NHANES. Eur. J. Nutr. 2016;55:833–843. doi: 10.1007/s00394-015-0942-x.
    1. Delpino F.M., Figueiredo L.M., Gonçalves da Silva T., Flores T.R. Effects of blueberry and cranberry on type 2 diabetes parameters in individuals with or without diabetes: A systematic review and meta-analysis of randomized clinical trials. Nutr. Metab. Cardiovasc. Dis. 2022;32:1093–1109. doi: 10.1016/j.numecd.2022.02.004.
    1. Rodriguez-Mateos A., Le Sayec M., Istas G., Johnson S.A. Berries and Berry Bioactive Compounds in Promoting Health. The Royal Society of Chemistry; London, UK: 2022. The Effects of Berry Bioactive Compounds on Vascular Function; pp. 120–165.
    1. Curtis P.J., Van Der Velpen V., Berends L., Jennings A., Feelisch M., Umpleby A.M., Evans M., Fernandez B.O., Meiss M.S., Minnion M., et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019;109:1535–1545. doi: 10.1093/ajcn/nqy380.
    1. Johnson S.A., Feresin R.G., Navaei N., Figueroa A., Elam M.L., Akhavan N.S., Hooshmand S., Pourafshar S., Payton M.E., Arjmandi B.H. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre- and stage 1-hypertension: A randomized controlled trial. Food Funct. 2017;8:372–380. doi: 10.1039/C6FO01216G.
    1. Johnson S.A., Figueroa A., Navaei N., Wong A., Kalfon R., Ormsbee L.T., Feresin R.G., Elam M.L., Hooshmand S., Payton M.E., et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015;115:369–377. doi: 10.1016/j.jand.2014.11.001.
    1. Feresin R.G., Johnson S.A., Elam M.L., Pourafshar S., Navaei N., Akhavan N.S., Tenenbaum G., Figueroa A., Arjmandi B.H. Effects of strawberries on bone biomarkers in pre- And stage 1-hypertensive postmenopausal women: A secondary analysis. Food Funct. 2021;12:12526–12534. doi: 10.1039/D1FO01555A.
    1. Stevenson D., Scalzo J. Anthocyanin composition and content of blueberries from around the world. J. Berry Res. 2012;2:179–189. doi: 10.3233/JBR-2012-038.
    1. Sellappan S., Akoh C.C., Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 2002;50:2432–2438. doi: 10.1021/jf011097r.
    1. Li C., Feng J., Huang W.Y., An X.T. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J. Agric. Food Chem. 2013;61:523–531. doi: 10.1021/jf3046158.
    1. Može Š., Polak T., Gašperlin L., Koron D., Vanzo A., Poklar Ulrih N., Abram V. Phenolics in slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.) J. Agric. Food Chem. 2011;59:6998–7004. doi: 10.1021/jf200765n.
    1. Kalt W., Lawand C., Ryan D.A.J., McDonald J.E., Donner H., Forney C.F. Oxygen Radical Absorbing Capacity, Anthocyanin and Phenolic Content of Highbush Blueberries (Vaccinium corymbosum L.) during Ripening and Storage. J. Am. Soc. Hortic. Sci. 2003;128:917–923. doi: 10.21273/JASHS.128.6.0917.
    1. Kalt W., Cassidy A., Howard L.R., Krikorian R., Stull A.J., Tremblay F., Zamora-Ros R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020;11:224–236. doi: 10.1093/advances/nmz065.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jime L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727.
    1. Monagas M., Urpi-Sarda M., Sánchez-Patán F., Llorach R., Garrido I., Gómez-Cordovés C., Andres-Lacueva C., Bartolomé B. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010;1:233–253. doi: 10.1039/c0fo00132e.
    1. Lila M.A., Hoskin R.T., Grace M.H., Xiong J., Strauch R., Ferruzzi M., Iorizzo M., Kay C. Boosting the Bioaccessibility of Dietary Bioactives by Delivery as Protein–Polyphenol Aggregate Particles. J. Agric. Food Chem. 2022 doi: 10.1021/acs.jafc.2c00398.
    1. Scholz S., Williamson G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int. J. Vitam. Nutr. Res. 2007;77:224–235. doi: 10.1024/0300-9831.77.3.224.
    1. Le Bourvellec C., Renard C.M.G.C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 2012;52:213–248. doi: 10.1080/10408398.2010.499808.
    1. Yang B., Dong Y., Wang F., Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 2020;25:4613. doi: 10.3390/molecules25204613.
    1. Green R.J., Murphy A.S., Schulz B., Watkins B.A., Ferruzzi M.G. Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol. Nutr. Food Res. 2007;51:1152–1162. doi: 10.1002/mnfr.200700086.
    1. Xie Y., Kosińska A., Xu H., Andlauer W. Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model. Food Res. Int. 2013;53:793–800. doi: 10.1016/j.foodres.2012.07.063.
    1. Lamothe S., Azimy N., Bazinet L., Couillard C., Britten M. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct. 2014;5:2621–2631. doi: 10.1039/C4FO00203B.
    1. Guri A., Li Y., Corredig M. Interfacial dilational properties of tea polyphenols and milk proteins with gut epithelia and the role of mucus in nutrient adsorption. Food Funct. 2015;6:3642–3651. doi: 10.1039/C5FO00654F.
    1. Sridhar K., Bouhallab S., Croguennec T., Renard D. Recent trends in design of healthier plant-based alternatives: Nutritional profile, gastrointestinal digestion, and consumer perception. Crit. Rev. Food Sci. Nutr. 2022 doi: 10.1080/10408398.2022.2081666. online ahead of print .
    1. Sethi S., Tyagi S.K., Anurag R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016;53:3408–3423. doi: 10.1007/s13197-016-2328-3.
    1. Adamczyk D., Jaworska D., Affeltowicz D., Maison D. Plant-Based Dairy Alternatives: Consumers’ Perceptions, Motivations, and Barriers—Results from a Qualitative Study in Poland, Germany, and France. Nutrients. 2022;14:2171. doi: 10.3390/nu14102171.
    1. Global Plant-Based Protein Supplements Market Size to Surge Past USD 9 Billion by 2027. Globe Newswire–Market Study Report; Los Angeles, CA, USA: 2022.
    1. Stanley T.H., Van Buiten C.B., Baker S.A., Elias R.J., Anantheswaran R.C., Lambert J.D. Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chem. 2018;255:414–420. doi: 10.1016/j.foodchem.2018.02.036.
    1. Giusti M.M., Wrolstad R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001;1:F1.2.1–F1.2.13. doi: 10.1002/0471142913.faf0102s00.
    1. Cerezo A.B., Cătunescu G.M., González M.M.P., Hornedo-Ortega R., Pop C.R., Rusu C.C., Chirilă F., Rotar A.M., Carmen Garcia-Parrilla M., Troncoso A.M. Anthocyanins in blueberries grown in hot climate exert strong antioxidant activity and may be effective against urinary tract bacteria. Antioxidants. 2020;9:478. doi: 10.3390/antiox9060478.
    1. Prior R.L., Fan E., Ji H., Howell A., Nio C., Paynef M.J., Reed J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010;90:1473–1478. doi: 10.1002/jsfa.3966.
    1. Grace M.H., Esposito D., Dunlap K.L., Lila M.A. Comparative Analysis of Phenolic Content and Profile, Antioxidant Capacity and Anti-inflammatory Bioactivity in Wild Alaskan and Commercial Vaccinium Berries. J. Agric. Food Chem. 2014;62:4007–4017. doi: 10.1021/jf403810y.
    1. Gao Z., Shen P., Lan Y., Cui L., Ohm J.B., Chen B., Rao J. Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Res. Int. 2020;131:109045. doi: 10.1016/j.foodres.2020.109045.
    1. Van Buiten C.B., Lambert J.D., Elias R.J. Green Tea Polyphenols Mitigate Gliadin-Mediated Inflammation and Permeability in Vitro. Mol. Nutr. Food Res. 2018;62:e1700879. doi: 10.1002/mnfr.201700879.
    1. Menard L.M., Wood N.B., Vigoreaux J.O. Secondary structure of the novel myosin binding domain wyr and implications within myosin structure. Biology. 2021;10:603. doi: 10.3390/biology10070603.
    1. Friedman M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J. Agric. Food Chem. 2004;52:385–406. doi: 10.1021/jf030490p.
    1. Marks D., Glyphis J., Leighton M. Measurement of protein in tannin-protein precipitates using ninhydrin. J. Sci. Food Agric. 1987;38:255–261. doi: 10.1002/jsfa.2740380309.
    1. Hoskin R.T., Xiong J., Lila M.A. Comparison of berry juice concentrates and pomaces and alternative plant proteins to produce spray dried protein-polyphenol food ingredients. Food Funct. 2019;10:6286–6299. doi: 10.1039/C9FO01587F.
    1. Correa-Betanzo J., Allen-Vercoe E., McDonald J., Schroeter K., Corredig M., Paliyath G. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem. 2014;165:522–531. doi: 10.1016/j.foodchem.2014.05.135.
    1. Tsuda H., Kunitake H., Kawasaki-Takaki R., Nishiyama K., Yamasaki M., Komatsu H., Yukizaki C. Antioxidant activities and anti-cancer cell proliferation properties of natsuhaze (Vaccinium oldhamii miq.), shashanbo (V. Bracteatum thunb.) and blueberry cultivars. Plants. 2013;2:57–71. doi: 10.3390/plants2010057.
    1. Malomo S.A., He R., Aluko R.E. Structural and functional properties of hemp seed protein products. J. Food Sci. 2014;79:1512–1521. doi: 10.1111/1750-3841.12537.
    1. Teh S.S., Bekhit A.E.D., Carne A., Birch J. Effect of the defatting process, acid and alkali extraction on the physicochemical and functional properties of hemp, flax and canola seed cake protein isolates. J. Food Meas. Charact. 2014;8:92–104. doi: 10.1007/s11694-013-9168-x.
    1. Stone A.K., Karalash A., Tyler R.T., Warkentin T.D., Nickerson M.T. Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res. Int. 2015;76:31–38. doi: 10.1016/j.foodres.2014.11.017.
    1. Boye J.I., Aksay S., Roufik S., Ribéreau S., Mondor M., Farnworth E., Rajamohamed S.H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010;43:537–546. doi: 10.1016/j.foodres.2009.07.021.
    1. Ozdal T., Capanoglu E., Altay F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013;51:954–970. doi: 10.1016/j.foodres.2013.02.009.
    1. Nagy K., Courtet-compondu M.C., Williamson G., Rezzi S., Kussmann M., Rytz A. Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence. Food Chem. 2012;132:1333–1339. doi: 10.1016/j.foodchem.2011.11.113.
    1. Chen Y., Hagerman A.E. Quantitative Examination of Oxidized Polyphenol-Protein Complexes. J. Agric. Food Chem. 2004;52:6061–6067. doi: 10.1021/jf049602i.
    1. Ajibola C.F., Aluko R.E. Physicochemical and Functional Properties of 2S, 7S, and 11S Enriched Hemp Seed Protein Fractions. Molecules. 2022;27:1059. doi: 10.3390/molecules27031059.
    1. de Carvalho-Silva L.B., Vissotto F.Z., Amaya-Farfan J. Physico-Chemical Properties of Milk Whey Protein Agglomerates for Use in Oral Nutritional Therapy. Food Nutr. Sci. 2013;04:69–78. doi: 10.4236/fns.2013.49A2010.
    1. Stone A.K., Avarmenko N.A., Warkentin T.D., Nickerson M.T. Functional properties of protein isolates from different pea cultivars. Food Sci. Biotechnol. 2015;24:827–833. doi: 10.1007/s10068-015-0107-y.
    1. Seczyk L., Swieca M., Kapusta I., Gawlik-Dziki U. Protein–phenolic interactions as a factor affecting the physicochemical properties of white bean proteins. Molecules. 2019;24:408. doi: 10.3390/molecules24030408.
    1. Ye J., Fan F., Xu X., Liang Y. Interactions of black and green tea polyphenols with whole milk. Food Res. Int. 2013;53:449–455. doi: 10.1016/j.foodres.2013.05.033.
    1. Ross J.B.A., Laws W.R., Rousslang K.W., Wyssbrod H.R. In: Tyrosine Fluorescence and Phosphorescence from Proteins and Polypeptides. Lakowica J.R., editor. Vol. 3 Plenum Press; New York, NY, USA: 1992.
    1. Sun X., Sun Y., Li Y., Wu Q., Wang L. Identification and Characterization of the Seed Storage Proteins and Related Genes of Cannabis sativa L. Front. Nutr. 2021;8:678421. doi: 10.3389/fnut.2021.678421.
    1. Banaszek A., Townsend J.R., Bender D., Vantrease W.C., Marshall A.C., Johnson K.D. The effects of whey vs. Pea protein on physical adaptations following 8-weeks of high-intensity functional training (hift): A pilot study. Sports. 2019;7:12. doi: 10.3390/sports7010012.
    1. Joye I.J., Davidov-Pardo G., Ludescher R.D., McClements D.J. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chem. 2015;185:261–267. doi: 10.1016/j.foodchem.2015.03.128.
    1. Acharya D.P., Sanguansri L., Augustin M.A. Binding of resveratrol with sodium caseinate in aqueous solutions. Food Chem. 2013;141:1050–1054. doi: 10.1016/j.foodchem.2013.03.037.
    1. Munialo C.D., Martin A.H., Van Der Linden E., De Jongh H.H.J. Fibril formation from pea protein and subsequent gel formation. J. Agric. Food Chem. 2014;62:2418–2427. doi: 10.1021/jf4055215.
    1. Greenfield N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2007;1:2876–2890. doi: 10.1038/nprot.2006.202.
    1. Van Buiten C.B., Yennawar N.H., Pacheco C.N., Hatzakis E., Elias R.J. Physicochemical interactions with (-)-epigallocatechin-3-gallate drive structural modification of celiac-associated peptide α2-gliadin (57-89) at physiological conditions. Food Funct. 2019;10:2997–3007. doi: 10.1039/C9FO00553F.
    1. Canon F., Ballivian R., Chirot F., Antoine R., Sarni-Manchado P., Lemoine J., Dugourd P. Folding of a salivary intrinsically disordered protein upon binding to tannins. J. Am. Chem. Soc. 2011;133:7847–7852. doi: 10.1021/ja200534f.
    1. Girard A.L. Moderate heat enhances gliadin-proanthocyanidin interactions. Food Chem. 2022;393:133331. doi: 10.1016/j.foodchem.2022.133331.
    1. Liang L., Tajmir-Riahi H.A., Subirade M. Interaction of β-Lactoglobulin with resveratrol and its biological implications. Biomacromolecules. 2008;9:50–56. doi: 10.1021/bm700728k.
    1. Tang C., Tan B., Sun X. Elucidation of interaction between whey proteins and proanthocyanidins and its protective effects on proanthocyanidins during in-vitro digestion and storage. Molecules. 2021;26:5468. doi: 10.3390/molecules26185468.
    1. Zhi Z., Yan L., Li H., Dewettinck K., Van der Meeren P., Liu R., Van Bockstaele F. A combined approach for modifying pea protein isolate to greatly improve its solubility and emulsifying stability. Food Chem. 2022;380:131832. doi: 10.1016/j.foodchem.2021.131832.
    1. Hagerman A.E., Butler L.G. Specificity of proanthocyanidin-protein interactoins. J. Biol. Chem. 1981;256:4494–4497. doi: 10.1016/S0021-9258(19)69462-7.
    1. Callaway J.C. Hempseed as a nutritional resource: An overview. Euphytica. 2004;140:65–72. doi: 10.1007/s10681-004-4811-6.
    1. Babault N., Païzis C., Deley G., Guérin-Deremaux L., Saniez M.H., Lefranc-Millot C., Allaert F.A. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. J. Int. Soc. Sports Nutr. 2015;12:3. doi: 10.1186/s12970-014-0064-5.
    1. Bordenave N., Hamaker B.R., Ferruzzi M.G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 2014;5:18–34. doi: 10.1039/C3FO60263J.
    1. Hussein L., Abbas H. Nitrogen balance studies among boys fed combinations of faba beans and wheat differing in polyphenolic contents. Nutr. Rep. Int. 1985;31:67–81.
    1. Tagliazucchi D., Verzelloni E., Conte A. Effect of some phenolic compounds and beverages on pepsin activity during simulated gastric digestion. J. Agric. Food Chem. 2005;53:8706–8713. doi: 10.1021/jf058074n.
    1. Cirkovic Velickovic T.D., Stanic-Vucinic D.J. The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Compr. Rev. Food Sci. Food Saf. 2018;17:82–103. doi: 10.1111/1541-4337.12320.
    1. McDougall G.J., Kulkarni N.N., Stewart D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009;115:193–199. doi: 10.1016/j.foodchem.2008.11.093.
    1. Boath A.S., Grussu D., Stewart D., McDougall G.J. Berry polyphenols inhibit digestive enzymes: A source of potential health benefits? Food Dig. 2012;3:1–7. doi: 10.1007/s13228-012-0022-0.

Source: PubMed

3
Abonnieren