Antibiotic lock therapy: review of technique and logistical challenges

Julie Ann Justo, P Brandon Bookstaver, Julie Ann Justo, P Brandon Bookstaver

Abstract

Antibiotic lock therapy (ALT) for the prevention and treatment of catheter-related bloodstream infections is a simple strategy in theory, yet its real-world application may be delayed or avoided due to technical questions and/or logistical challenges. This review focuses on these latter aspects of ALT, including preparation information for a variety of antibiotic lock solutions (ie, aminoglycosides, beta-lactams, fluoroquinolones, folate antagonists, glycopeptides, glycylcyclines, lipopeptides, oxazolidinones, polymyxins, and tetracyclines) and common clinical issues surrounding ALT administration. Detailed data regarding concentrations, additives, stability/compatibility, and dwell times are summarized. Logistical challenges such as lock preparation procedures, use of additives (eg, heparin, citrate, or ethylenediaminetetraacetic acid), timing of initiation and therapy duration, optimal dwell time and catheter accessibility, and risks of ALT are also described. Development of local protocols is recommended in order to avoid these potential barriers and encourage utilization of ALT where appropriate.

Keywords: antibiotic lock; bacteremia; biofilm; catheter-related bloodstream infection.

References

    1. Centers for Disease Control and Prevention (CDC) Vital Signs. Making Health Care Safer: Reducing Bloodstream Infections. Atlanta, GA: Centers for Disease Control and Prevention; 2011. [Accessed May 10, 2014]. Available from: .
    1. Dudeck MA, Weiner LM, Allen-Bridson K, et al. National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J Infect Control. 2013;41(12):1148–1166.
    1. Centers for Disease Control and Prevention (CDC) Vital Signs: Central line-associated bloodstream infections – United States, 2001, 2008, and 2009. MMWR Morb Mortal Wkly Rep. 2011;60(8):243–248.
    1. Centers for Disease Control and Prevention (CDC) Guidelines for the Prevention of Intravascular Catheter-Related Infections 2011. Atlanta, GA: Centers for Disease Control and Prevention; 2011. [Accessed May 10, 2014]. Available from: .
    1. Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45.
    1. Bustos C, Aguinaga A, Carmona-Torre F, Del Pozo JL. Long-term catheterization: current approaches in the diagnosis and treatment of port-related infections. Infect Drug Resist. 2014;7:25–35.
    1. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. J Bacteriol. 1994;176(8):2137–2142.
    1. Nichols WW, Dorrington SM, Slack MP, Walmsley HL. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988;32(4):518–523.
    1. Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2005;49(6):2467–2473.
    1. Araújo PA, Mergulhão F, Melo L, Simões M. The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling. 2014 Apr 29; Epub.
    1. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000;44(7):1818–1824.
    1. Banin E, Brady KM, Greenberg EP. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol. 2006;72(3):2064–2069.
    1. Raad II, Fang X, Keutgen XM, Jiang Y, Sherertz R, Hachem R. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis. 2008;21(4):385–392.
    1. Maiefski M, Rupp ME, Hermsen ED. Ethanol lock technique: review of the literature. Infect Control Hosp Epidemiol. 2009;30(11):1096–1108.
    1. Jaffer Y, Selby NM, Taal MW, Fluck RJ, McIntyre CW. A meta-analysis of hemodialysis catheter locking solutions in the prevention of catheter-related infection. Am J Kidney Dis. 2008;51(2):233–241.
    1. O’Horo JC, Silva GL, Safdar N. Anti-infective locks for treatment of central line-associated bloodstream infection: a systematic review and meta-analysis. Am J Nephrol. 2011;34(5):415–422.
    1. Polgreen PM, Beekmann SE, Diekema DJ, Sherertz RJ. Wide variability in the use of antimicrobial lock therapy and prophylaxis among infectious diseases consultants. Infect Control Hosp Epidemiol. 2010;31(5):554–557.
    1. Saxena AK, Panhotra BR, Naguib M. Sudden irreversible sensory-neural hearing loss in a patient with diabetes receiving amikacin as an antibiotic-heparin lock. Pharmacotherapy. 2002;22(1):105–108.
    1. Rao JS, O’Meara A, Harvey T, Breatnach F. A new approach to the management of Broviac catheter infection. J Hosp Infect. 1992;22(2):109–116.
    1. Onder AM, Chandar J, Billings AA, et al. Comparison of early versus late use of antibiotic locks in the treatment of catheter-related bacteremia. Clin J Am Soc Nephrol. 2008;3(4):1048–1056.
    1. Poole CV, Carlton D, Bimbo L, Allon M. Treatment of catheter-related bacteraemia with an antibiotic lock protocol: effect of bacterial pathogen. Nephrol Dial Transplant. 2004;19(5):1237–1244.
    1. Haimi-Cohen Y, Husain N, Meenan J, Karayalcin G, Lehrer M, Rubin LG. Vancomycin and ceftazidime bioactivities persist for at least 2 weeks in the lumen in ports: simplifying treatment of port-associated bloodstream infections by using the antibiotic lock technique. Antimicrob Agents Chemother. 2001;45(5):1565–1567.
    1. Anthony TU, Rubin LG. Stability of antibiotics used for antibiotic-lock treatment of infections of implantable venous devices (ports) Antimicrob Agents Chemother. 1999;43(8):2074–2076.
    1. Robinson JL, Tawfik G, Saxinger L, Stang L, Etches W, Lee B. Stability of heparin and physical compatibility of heparin/antibiotic solutions in concentrations appropriate for antibiotic lock therapy. J Antimicrob Chemother. 2005;56(5):951–953.
    1. Boorgu R, Dubrow AJ, Levin NW, et al. Adjunctive antibiotic/lock therapy in the treatment of bacteremia associated with the use of a subcutaneously implanted hemodialysis access device. ASAIO J. 2000;46(6):767–770.
    1. Santarpia L, Pasanisi F, Alfonsi L, et al. Prevention and treatment of implanted central venous catheter (CVC) – related sepsis: a report after six years of home parenteral nutrition (HPN) Clin Nutr. 2002;21(3):207–211.
    1. Del Pozo JL, Alonso M, Serrera A, Hernaez S, Aguinaga A, Leiva J. Effectiveness of the antibiotic lock therapy for the treatment of port-related enterococci, Gram-negative, or Gram-positive bacilli bloodstream infections. Diagn Microbiol Infect Dis. 2009;63(2):208–212.
    1. Lee MY, Ko KS, Song JH, Peck KR. In vitro effectiveness of the antibiotic lock technique (ALT) for the treatment of catheter-related infections by Pseudomonas aeruginosa and Klebsiella pneumoniae. J Antimicrob Chemother. 2007;60(4):782–787.
    1. Lee HR, Lee YK, Song YL, et al. Treatment of catheter-related bacteremia with an antibiotic lock protocol in hemodialysis patients. Korean J Nephrol. 2005;24(6):903–911. Korean.
    1. Saxinger L, Williams K, Lyon M, Mochurok M. Stability of antibiotics in heparin at 37°C: towards antibiotic locks for central venous catheter related infections; Programme and Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; September 26–29, 1999; San Francisco, CA.
    1. Bookstaver PB, Rokas KE, Norris LB, Edwards JM, Sherertz RJ. Stability and compatibility of antimicrobial lock solutions. Am J Health Syst Pharm. 2013;70(24):2185–2198.
    1. Bastani B. The myth of incompatibility of gentamicin and heparin revisited. J Nephrol. 2011;24(2):192–195.
    1. Zhao Y, Li Z, Zhang L, et al. Citrate versus heparin lock for hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis. 2014;63(3):479–490.
    1. Dotson B, Lynn S, Savakis K, Churchwell MD. Physical compatibility of 4% sodium citrate with selected antimicrobial agents. Am J Health Syst Pharm. 2010;67(14):1195–1198.
    1. Onder AM, Chandar J, Simon N, et al. Comparison of tissue plasminogen activator-antibiotic locks with heparin-antibiotic locks in children with catheter-related bacteraemia. Nephrol Dial Transplant. 2008;23(8):2604–2610.
    1. Onder AM, Chandar J, Billings A, et al. Prophylaxis of catheter-related bacteremia using tissue plasminogen activator-tobramycin locks. Pediatr Nephrol. 2009;24(11):2233–2243.
    1. Sofroniadou S, Revela I, Smirloglou D, et al. Linezolid versus vancomycin antibiotic lock solution for the prevention of nontunneled catheter-related blood stream infections in hemodialysis patients: a prospective randomized study. Semin Dial. 2012;25(3):344–350.
    1. Droste JC, Jeraj HA, MacDonald A, Farrington K. Stability and in vitro efficacy of antibiotic-heparin lock solutions potentially useful for treatment of central venous catheter-related sepsis. J Antimicrob Chemother. 2003;51(4):849–855.
    1. LaPlante KL, Woodmansee S, Mermel LA. Compatibility and stability of telavancin and vancomycin in heparin or sodium citrate lock solutions. Am J Health Syst Pharm. 2012;69(16):1405–1409.
    1. Messing B, Peitra-Cohen S, Debure A, Beliah M, Bernier JJ. Antibiotic-lock technique: a new approach to optimal therapy for catheter-related sepsis in home-parenteral nutrition patients. JPEN J Parenter Enteral Nutr. 1988;12(2):185–189.
    1. Chatzinikolaou I, Zipf TF, Hanna H, et al. Minocycline-ethylenediaminetetraacetate lock solution for the prevention of implantable port infections in children with cancer. Clin Infect Dis. 2003;36(1):116–119.
    1. Feely T, Copley A, Bleyer AJ. Catheter lock solutions to prevent bloodstream infections in high-risk hemodialysis patients. Am J Nephrol. 2007;27(1):24–29.
    1. Campos RP, do Nascimento MM, Chula DC, Riella MC. Minocycline-EDTA lock solution prevents catheter-related bacteremia in hemodialysis. J Am Soc Nephrol. 2011;22(10):1939–1945.
    1. Nori US, Manoharan A, Yee J, Besarab A. Comparison of low-dose gentamicin with minocycline as catheter lock solutions in the prevention of catheter-related bacteremia. Am J Kidney Dis. 2006;48(4):596–605.
    1. Bookstaver PB, Williamson JC, Tucker BK, Raad II, Sherertz RJ. Activity of novel antibiotic lock solutions in a model against isolates of catheter-related bloodstream infections. Ann Pharmacother. 2009;43(2):210–219.
    1. Vincentelli J, Braguer D, Guillet P, et al. Formulation of a flush solution of heparin, vancomycin, and colistin for implantable access systems in oncology. J Oncol Pharm Pract. 1997;3(1):18–23.
    1. Ozbek B, Mataraci E. In vitro effectiveness of colistin, tigecycline and levofloxacin alone and combined with clarithromycin and/or heparin as lock solutions against embedded Acinetobacter baumannii strains. J Antimicrob Chemother. 2013;68(4):827–830.
    1. Bookstaver P, Premnath P, Edwards J. Evaluation of compatibility and stability of daptomycin in an antibiotic-anticoagulant lock solution; American College of Clinical Pharmacy Annual Meeting; October 21–24, 2012; Hollywood, FL.
    1. Maki DG, Ash SR, Winger RK, Lavin P, AZEPTIC Trial Investigators A novel antimicrobial and antithrombotic lock solution for hemodialysis catheters: a multi-center, controlled, randomized trial. Crit Care Med. 2011;39(4):613–620.
    1. Raad I, Bodey GP. Novel antimicrobial catheter lock solution: a new direction in which chelators replace heparin. Crit Care Med. 2011;39(4):875–876.
    1. DiMondi PV, Townsend ML, Johnson M, Durkin M. Antifungal catheter lock therapy for the management of a persistent Candida albicans bloodstream infection in an adult receiving hemodialysis. Pharmacotherapy. 2014;34(7):e120–e127.
    1. Vanholder R, Canaud B, Fluck R, et al. Diagnosis, prevention and treatment of haemodialysis catheter-related bloodstream infections (CRBSI): a position statement of European Renal Best Practice (ERBP) NDT Plus. 2010;3(3):234–246.
    1. Pierce DA, Rocco MV. Trisodium citrate: an alternative to unfractionated heparin for hemodialysis catheter dwells. Pharmacotherapy. 2010;30(11):1150–1158.
    1. MD Anderson Cancer Center. Triax Antimicrobial catheter lock solution for the treatment of central line associated bloodstream infection (CLABSI) [Accessed June 20, 2014]. Available from: . NLM identifier: NCT01539343.
    1. LexiComp Edetate Calcium Disodium, Calcium EDTA [Drug Monograph] 2009. [Accessed June 20, 2014]. Available from: .
    1. US Food and Drug Administration Public health advisory: edetate disodium (marketed as Endrate and generic products) 2008. [Accessed June 20, 2014]. Available from: .
    1. US Food and Drug Administration . Warning on Tricitrasol Dialysis Catheter Anticoagulant. FDA Talk Paper. Vol. 16. Rockville, MD: Public Health Service; 2000. pp. 4–14-2000.
    1. Punt CD, Boer WE. Cardiac arrest following injection of concentrated trisodium citrate. Clin Nephrol. 2008;69(4):317–318.
    1. Willicombe MK, Vernon K, Davenport A. Embolic complications from central venous hemodialysis catheters used with hypertonic citrate locking solution. Am J Kidney Dis. 2010;55(2):348–351.
    1. Schilcher G, Scharnagl H, Horina JH, et al. Trisodium citrate induced protein precipitation in haemodialysis catheters might cause pulmonary embolism. Nephrol Dial Transplant. 2012;27(7):2953–2957.
    1. Tauro-Implant GmbH [webpage on the Internet] FAQ. TauroLock Antimicrob Catheter Lock Syst Provide Patency Infect Control. 2010. [Accessed June 20, 2014]. Available from: .
    1. Dirinco [webpage on the Internet] FAQs. Citra-Lock Catheter Lock Solut. 2013. [Accessed June 20, 2014]. Available from: .
    1. Cote D, Lok CE, Battistella M, Vercaigne L. Stability of trisodium citrate and gentamicin solution for catheter locks after storage in plastic syringes at room temperature. Can J Hosp Pharm. 2010;63(4):304–311.
    1. Bookstaver PB, Gerrald KR, Moran RR. Clinical outcomes of antimicrobial lock solutions used in a treatment modality: a retrospective case series analysis. Clin Pharmacol Adv Appl. 2010;2:123–130.
    1. Tendas A, Niscola P, Cupelli L, et al. Controversies on antibiotic lock technique duration: experience with a 3-day course for hematological patients. Infect Control Hosp Epidemiol. 2011;32(4):408–410.
    1. Sánchez-Muñoz A, Aguado JM, López-Martín A, et al. Usefulness of antibiotic-lock technique in management of oncology patients with uncomplicated bacteremia related to tunneled catheters. Eur J Clin Microbiol Infect Dis. 2005;24(4):291–293.
    1. Segarra-Newnham M, Martin-Cooper EM. Antibiotic lock technique: a review of the literature. Ann Pharmacother. 2005;39(2):311–318.
    1. Fernandez-Hidalgo N, Almirante B, Calleja R, et al. Antibiotic-lock therapy for long-term intravascular catheter-related bacteraemia: results of an open, non-comparative study. J Antimicrob Chemother. 2006;57(6):1172–1180.
    1. Raad I, Hanna H, Dvorak T, Chaiban G, Hachem R. Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother. 2007;51(1):78–83.
    1. Messing B, Man F, Colimon R, Thuillier F, Beliah M. Antibiotic-lock technique is an effective treatment of bacterial catheter-related sepsis during parenteral nutrition. Clin Nutr. 1990;9(4):220–225.
    1. Yevzlin AS, Sanchez RJ, Hiatt JG, et al. Concentrated heparin lock is associated with major bleeding complications after tunneled hemodialysis catheter placement. Semin Dial. 2007;20(4):351–354.
    1. Abbas SA, Haloob IA, Taylor SL, et al. Effect of antimicrobial locks for tunneled hemodialysis catheters on bloodstream infection and bacterial resistance: a quality improvement report. Am J Kidney Dis. 2009;53(3):492–502.
    1. Landry DL, Braden GL, Gobeille SL, Haessler SD, Vaidya CK, Sweet SJ. Emergence of gentamicin-resistant bacteremia in hemodialysis patients receiving gentamicin lock catheter prophylaxis. Clin J Am Soc Nephrol. 2010;5(10):1799–1804.
    1. Walters MC, 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–323.
    1. Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy. 1997;43(5):340–345.
    1. Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010;65(9):1955–1958.
    1. Dunne WM, Jr, Mason EO, Jr, Kaplan SL. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 1993;37(12):2522–2526.
    1. Zheng Z, Stewart PS. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2002;46(3):900–903.
    1. Rodríguez-Martínez JM, Ballesta S, García I, Conejo MC, Pascual A. Actividad y permeabilidad de linezolid y vancomicina en biocapas de Staphylococcus epidermidis [Activity and penetration of linezolid and vancomycin against Staphylococcus epidermidis biofilms] Enferm Infecc Microbiol Clin. 2007;25(7):425–428. Spanish.
    1. Stewart PS, Davison WM, Steenbergen JN. Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 2009;53(8):3505–3507.
    1. Lin M, He L, Gao J, et al. Penetration of erythromycin through Staphylococcus epidermidis biofilm. Chin Med J (Engl) 2013;126(14):2647–2651.
    1. Hoyle BD, Alcantara J, Costerton JW. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother. 1992;36(9):2054–2056.
    1. Darouiche RO, Dhir A, Miller AJ, Landon GC, Raad II, Musher DM. Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. J Infect Dis. 1994;170(3):720–723.
    1. Robinson JL, Tawfik G, Roth A. Barriers to antibiotic lock therapy in children with intravascular catheter-related bloodstream infections. Pediatr Infect Dis J. 2005;24(10):944.
    1. Elwood RL, Spencer SE. Successful clearance of catheter-related bloodstream infection by antibiotic lock therapy using ampicillin. Ann Pharmacother. 2006;40(2):347–350.
    1. Krzywda EA, Andris DA, Edmiston CE, Quebbeman EJ. Treatment of Hickman catheter sepsis using antibiotic lock technique. Infect Control Hosp Epidemiol. 1995;16(10):596–598.
    1. Davanipur M, Pakfetrat M, Roozbeh J. Cloxacillin as an antibiotic lock solution for prevention of catheter-associated infection. Iran J Kidney Dis. 2011;5(5):328–331.
    1. Johnson DC, Johnson FL, Goldman S. Preliminary results treating persistent central venous catheter infections with the antibiotic lock technique in pediatric patients. Pediatr Infect Dis J. 1994;13(10):930–931.
    1. Silva TNV, Mendes ML, Abrão JMG, Caramori JT, Ponce D. Successful prevention of tunneled central catheter infection by antibiotic lock therapy using cefazolin and gentamicin. Int Urol Nephrol. 2013;45(5):1405–1413.
    1. Chauhan A, Lebeaux D, Decante B, et al. A rat model of central venous catheter to study establishment of long-term bacterial biofilm and related acute and chronic infections. PLoS One. 2012;7(5):e37281.
    1. Maya ID, Carlton D, Estrada E, Allon M. Treatment of dialysis catheter-related Staphylococcus aureus bacteremia with an antibiotic lock: a quality improvement report. Am J Kidney Dis. 2007;50(2):289–295.
    1. Chiou PF, Chang CC, Wen YK, Yang Y. Antibiotic lock technique reduces the incidence of temporary catheter-related infections. Clin Nephrol. 2006;65(6):419–422.
    1. Kim SH, Song KI, Chang JW, et al. Prevention of uncuffed hemodialysis catheter-related bacteremia using an antibiotic lock technique: a prospective, randomized clinical trial. Kidney Int. 2006;69(1):161–164.
    1. Vercaigne LM, Zelenitsky SA, Findlay I, Bernstein K, Penner SB. An in vitro evaluation of the antibiotic/heparin lock to sterilize central venous haemodialysis catheters. J Antimicrob Chemother. 2002;49(4):693–696.
    1. Vercaigne LM, Sitar DS, Penner SB, Bernstein K, Wang GQ, Burczynski FJ. Antibiotic-heparin lock: in vitro antibiotic stability combined with heparin in a central venous catheter. Pharmacotherapy. 2000;20(4):394–399.
    1. Krishnasami Z, Carlton D, Bimbo L, et al. Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int. 2002;61(3):1136–1142.
    1. Shah J, Feinfeld DA. Use of ‘locked-in’ antibiotic to treat an unusual gram-negative hemodialysis catheter infection. Nephron. 2000;85(4):348–350.
    1. Lee YK, Kim JK, Oh SE, Lee J, Noh JW. Successful antibiotic lock therapy in patients with refractory peritonitis. Clin Nephrol. 2009;72(6):488–491.
    1. Saxena AK, Panhotra BR. The impact of catheter-restricted filling with cefotaxime and heparin on the lifespan of temporary hemodialysis catheters: a case controlled study. J Nephrol. 2005;18(6):755–763.
    1. Saxena AK, Panhotra BR, Sundaram DS, Morsy MN, Al-Ghamdi AM. Enhancing the survival of tunneled haemodialysis catheters using an antibiotic lock in the elderly: a randomised, double-blind clinical trial. Nephrology (Carlton) 2006;11(4):299–305.
    1. Saxena AK, Panhotra BR, Sundaram DS, et al. Tunneled catheters’ outcome optimization among diabetics on dialysis through antibiotic-lock placement. Kidney Int. 2006;70(9):1629–1635.
    1. Saxena AK, Panhotra BR, Al-hafiz AA, Sundaram DS, Abu-Oyun B, Al Mulhim K. Cefotaxime-heparin lock prophylaxis against hemodialysis catheter-related sepsis among Staphylococcus aureus nasal carriers. Saudi J Kidney Dis Transpl. 2012;23(4):743–754.
    1. Mortazavi M, Alsaeidi S, Sobhani R, et al. Successful prevention of tunneled, central catheter infection by antibiotic lock therapy using cefotaxime. J Res Med Sci. 2011;16(3):303–309.
    1. Baker DS, Waldrop B, Arnold J. Compatibility and stability of cefotaxime, vancomycin, and ciprofloxacin in antibiotic lock solutions containing heparin. Int J Pharm Compd. 2010;14(4):346–349.
    1. Capdevila JA, Segarra A, Planes AM, et al. Successful treatment of haemodialysis catheter-related sepsis without catheter removal. Nephrol Dial Transplant. 1993;8(3):231–234.
    1. Capdevila JA, Gavaldà J, Fortea J, et al. Lack of antimicrobial activity of sodium heparin for treating experimental catheter-related infection due to Staphylococcus aureus using the antibiotic-lock technique. Clin Microbiol Infect. 2001;7(4):206–212.
    1. Messing B. Catheter-sepsis during home parenteral nutrition: use of the antibiotic-lock technique. Nutrition. 1998;14(5):466–468.
    1. Domingo P, Fontanet A, Sánchez F, Allende L, Vazquez G. Morbidity associated with long-term use of totally implantable ports in patients with AIDS. Clin Infect Dis. 1999;29(2):346–351.
    1. Cesaro S, Cavaliere M, Spiller M, et al. A simplified method of antibiotic lock therapy for Broviac-Hickman catheters using a CLC 2000 connector device. Support Care Cancer. 2007;15(1):95–99.
    1. Bastani B, Amin K, Herr A. Prolonged stability of stored vancomycin, gentamicin, and heparin for use in the antibiotic-lock technique. ASAIO J. 2005;51(6):761–763.
    1. Battistella M, Vercaigne LM, Cote D, Lok CE. Antibiotic lock: in vitro stability of gentamicin and sodium citrate stored in dialysis catheters at 37 degrees C. Hemodial Int. 2010;14(3):322–326.
    1. Onder AM, Kato T, Simon N, et al. Prevention of catheter-related bacteremia in pediatric intestinal transplantation/short gut syndrome children with long-term central venous catheters. Pediatr Transplant. 2007;11(1):87–93.
    1. Castagnola E, Moroni C, Gandullia P, et al. Catheter lock and systemic infusion of linezolid for treatment of persistent Broviac catheter-related staphylococcal bacteremia. Antimicrob Agents Chemother. 2006;50(3):1120–1121.
    1. Henrickson KJ, Powell KR, Schwartz CL. A dilute solution of vancomycin and heparin retains antibacterial and anticoagulant activities. J Infect Dis. 1988;157(3):600–601.
    1. Yao JD, Arkin CF, Karchmer AW. Vancomycin stability in heparin and total parenteral nutrition solutions: novel approach to therapy of central venous catheter-related infections. JPEN J Parenter Enteral Nutr. 1992;16(3):268–274.
    1. Soriano A, Bregada E, Marqués JM, et al. Decreasing gradient of antibiotic concentration in the lumen of catheters locked with vancomycin. Eur J Clin Microbiol Infect Dis. 2007;26(9):659–661.
    1. Battistella M, Walker S, Law S, Lok C. Antibiotic lock: in vitro stability of vancomycin and four percent sodium citrate stored in dialysis catheters at 37 degrees C. Hemodial Int. 2009;13(3):322–328.
    1. Safdar N, Maki DG. Use of vancomycin-containing lock or flush solutions for prevention of bloodstream infection associated with central venous access devices: a meta-analysis of prospective, randomized trials. Clin Infect Dis. 2006;43(4):474–484.
    1. Dixon JJ, Steele M, Makanjuola AD. Anti-microbial locks increase the prevalence of Staphylococcus aureus and antibiotic-resistant Enterobacter: observational retrospective cohort study. Nephrol Dial Transplant. 2012;27(9):3575–3581.
    1. Fortún J, Grill F, Martín-Dávila P, et al. Treatment of long-term intravascular catheter-related bacteraemia with antibiotic-lock therapy. J Antimicrob Chemother. 2006;58(4):816–821.
    1. Beigi AA, Khansoltani S, Masoudpour H, Atapour AA, Eshaghian A, Khademi EF. Influence of intralumenal and antibiotic-lock of vancomycin on the rate of catheter removal in the patients with permanent hemodialysis catheters. Saudi J Kidney Dis Transplant. 2010;21(1):54–58.
    1. Del Pozo JL, Aguinaga A, Garcia-Fernandez N, et al. Intra-catheter leukocyte culture to monitor hemodialysis catheter colonization. A prospective study to prevent catheter-related bloodstream infections. Int J Artif Organs. 2008;31(9):820–826.
    1. Cuntz D, Michaud L, Guimber D, Husson MO, Gottrand F, Turck D. Local antibiotic lock for the treatment of infections related to central catheters in parenteral nutrition in children. JPEN J Parenter Enteral Nutr. 2002;26(2):104–108.
    1. Van Praagh ADG, Li T, Zhang S, et al. Daptomycin antibiotic lock therapy in a rat model of staphylococcal central venous catheter biofilm infections. Antimicrob Agents Chemother. 2011;55(9):4081–4089.
    1. Ortega R, Salmerón-García A, Cabeza J, Capitán-Vallvey LF, Navas N. Stability of daptomycin 5 mg/mL and heparin sodium 100 units/mL combined in lactated Ringer’s injection and stored in polypropylene syringes at 4 and −20°C. Am J Health Syst Pharm. 2014;71(11):956–959.
    1. Del Pozo JL, Rodil R, Aguinaga A, et al. Daptomycin lock therapy for grampositive long-term catheter-related bloodstream infections. Int J Clin Pract. 2012;66(3):305–308.
    1. Estes R, Theusch J, Beck A, Pitrak D, Mullane KM. Activity of daptomycin with or without 25 percent ethanol compared to combinations of minocycline, EDTA, and 25 percent ethanol against methicillin-resistant Staphylococcus aureus isolates embedded in biofilm. Antimicrob Agents Chemother. 2013;57(4):1998–2000.
    1. Al Akhrass F, Hachem R, Mohamed JA, et al. Central venous catheter-associated Nocardia bacteremia in cancer patients. Emerg Infect Dis. 2011;17(9):1651–1658.
    1. Raad I, Hachem R, Tcholakian RK, Sherertz R. Efficacy of minocycline and EDTA lock solution in preventing catheter-related bacteremia, septic phlebitis, and endocarditis in rabbits. Antimicrob Agents Chemother. 2002;46(2):327–332.
    1. Aslam S, Trautner BW, Ramanathan V, Darouiche RO. Pilot trial of N-acetylcysteine and tigecycline as a catheter-lock solution for treatment of hemodialysis catheter-associated bacteremia. Infect Control Hosp Epidemiol. 2008;29(9):894–897.
    1. Bartalesi F, Veloci S, Baragli F, et al. Successful tigecycline lock therapy in a Lactobacillus rhamnosus catheter-related bloodstream infection. Infection. 2012;40(3):331–334.
    1. Ghannoum MA, Isham N, Jacobs MR. Antimicrobial activity of B-Lock against bacterial and Candida spp. causing catheter-related bloodstream infections. Antimicrob Agents Chemother. 2011;55(9):4430–4431.

Source: PubMed

3
Abonnieren