Global trends in research on extracorporeal shock wave therapy (ESWT) from 2000 to 2021

Xinyu Zhang, Yuewen Ma, Xinyu Zhang, Yuewen Ma

Abstract

Background: This study intended to analyze the application of extracorporeal shock wave therapy in medicine and to evaluate the quality of related literature.

Methods: All publications were extracted from 2000 to 2021 from the Web of Science Core Collection (WoSCC). The literature characteristics were depicted by VOSviewer (version 1.6.15) and the online bibliometric website ( http://bibliometric.com/ ). The future trends and hotspots were conducted by Bibliographic Item Co-occurrence Matrix Builder (version 2.0) and gCLUTO software.

Results: We analyzed 1774 articles corresponding to the criteria for ESWT publications from 2000 to 2021. Most studies were conducted within the United States and China which besides have the most cooperation. The most published research institutions are Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, and Kaohsiung Medical University. Six research hotspots were identified by keyword clustering analysis: Cluster0: The effects of ESWT on muscle spasticity; Cluster1: The application of ESWT in osteoarthritis (OA); Cluster2: Therapeutic effect of ESWT on tendon diseases; Cluster3: Early application of ESWT/ESWL in urolithiasis; Cluster4: The Role of angiogenesis in ESWT and the efficiency of ESWT for penile disease; Cluster5: The Special value of radial extracorporeal shock wave therapy (rESWT).

Conclusions: A comprehensive and systematic bibliometric analysis of ESWT was conducted in our study. We identified six ESWT-related research hotspots and predicted future research trends. With the gradual increase of research on ESWT, we find that ESWT is used more and more extensively, such in musculoskeletal disease, bone delay union, neurological injury, andrology disorders, lymphedema, and so on. In addition, the mechanism is not destructive damage, as initially thought, but a restorative treatment. Furthermore, delayed union, cellulite, burn, and diabetic foot ulcers may be the future direction of scientific study.

Keywords: Extracorporeal shock wave therapy (ESWT); Research hotspots; VOSviewer.

Conflict of interest statement

The authors declare no competing interest in this study.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of data filtration processing and excluding publications
Fig. 2
Fig. 2
(A) Annual publication and citation number of the literature from 2000 to 2021. (B) The top ten categories’ distribution on ESWT
Fig. 3
Fig. 3
(A) The distribution of published publications by countries/regions in a world map. (B) The collaboration between two countries/regions. The size of each sector is proportional to the number of publications, while each line is directly proportional to the degree of scientific cooperation between the two countries
Fig. 4
Fig. 4
Co-authorship overlay visualization map of institutions. The size of each circle represents the number of publications of the related institution. The thickness of the line represents the closeness between two institutions. Dark blue and light blue dots stand for earlier, while orange and red dots stand for the last five years
Fig. 5
Fig. 5
Keywords co-occurrence overlay visualization map. The description is the same as in Fig. 4
Fig. 6
Fig. 6
The visualization mountain map. The volume of the hill is proportional to the intra-class similarity, and the height is proportional to the number of keywords contained within the cluster. The color of the mountain is related to the standard deviation within the class. Red means low standard deviation, and blue means high standard deviation
Fig. 7
Fig. 7
The visualization matrix map. The colors represent the values in the original data matrix. While white symbolizes near-zero values, a deepening red implies larger values

References

    1. Brunelli S, Bonanni C, Traballesi M, Foti C. Radial extracorporeal shock wave therapy: a novel approach for the treatment of Dupuytren’s contractures: a case report. Med (Baltim) 2020;99(24):e20587. doi: 10.1097/MD.0000000000020587.
    1. Lingeman JE, Woods J, Toth PD, Evan AP, McAteer JA. The role of lithotripsy and its side effects. J Urol. 1989;141(3 Pt 2):793–7. doi: 10.1016/S0022-5347(17)41012-3.
    1. Tognolo L, Giordani F, Biz C, Bernini A, Ruggieri P, Stecco C, et al. Myofascial points treatment with focused extracorporeal shock wave therapy (f-ESWT) for plantar fasciitis: an open label randomized clinical trial. Eur J Phys Rehabil Med. 2022;58(1):85–93. doi: 10.23736/S1973-9087.21.06814-3.
    1. Liu WC, Chen CT, Lu CC, Tsai YC, Liu YC, Hsu CW, et al. Extracorporeal shock Wave Therapy shows Superiority over Injections for Pain Relief and grip strength recovery in lateral epicondylitis: a systematic review and network Meta-analysis. Arthroscopy. 2022;38(6):2018–34. doi: 10.1016/j.arthro.2022.01.025.
    1. Yao G, Chen J, Duan Y, Chen X. Efficacy of extracorporeal shock Wave Therapy for lateral epicondylitis: a systematic review and Meta-analysis. Biomed Res Int. 2020;2020:2064781. doi: 10.1155/2020/2064781.
    1. Hsu PC, Chang KV, Chiu YH, Wu WT, Ozcakar L. Comparative effectiveness of Botulinum Toxin Injections and extracorporeal shockwave therapy for Post-Stroke Spasticity: a systematic review and network Meta-analysis. EClinicalMedicine. 2022;43:101222. doi: 10.1016/j.eclinm.2021.101222.
    1. Zhang D, Meng Y, Hai H, Yu XT, Ma YW. Radial extracorporeal shock Wave Therapy in an individual with primary trigeminal neuralgia: a Case Report and Literature Review. Am J Phys Med Rehabil. 2018;97(5):e42–e5. doi: 10.1097/PHM.0000000000000831.
    1. Wang C, Jing H, Sun Z, Yao J, Zhang X, Liu T, et al. A bibliometric analysis of primary Aldosteronism Research from 2000 to 2020. Front Endocrinol (Lausanne) 2021;12:665912. doi: 10.3389/fendo.2021.665912.
    1. Xavier-Santos D, Padilha M, Fabiano GA, Vinderola G, Gomes Cruz A, Sivieri K, et al. Evidences and perspectives of the use of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention and treatment of COVID-19: a bibliometric analysis and systematic review. Trends Food Sci Technol. 2022;120:174–92. doi: 10.1016/j.tifs.2021.12.033.
    1. Zhang Q, Zhao Y, Xing D, Lin J. Global Research Trends in Shock Wave for Therapy from 1990 to 2019: a bibliometric and visualized study. Biomed Res Int. 2021;2021:3802319.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74. doi: 10.2307/2529310.
    1. van Eck NJ, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111(2):1053–70. doi: 10.1007/s11192-017-2300-7.
    1. Li F, Li M, Guan P, Ma S, Cui L. Mapping publication trends and identifying hot spots of research on internet health information seeking behavior: a quantitative and co-word biclustering analysis. J Med Internet Res. 2015;17(3):e81. doi: 10.2196/jmir.3326.
    1. Yang A, Lv Q, Chen F, Wang D, Liu Y, Shi W. Identification of recent Trends in Research on vitamin D: a quantitative and co-word analysis. Med Sci Monit. 2019;25:643–55. doi: 10.12659/MSM.913026.
    1. Burke D. Spasticity as an adaptation to pyramidal tract injury. Adv Neurol. 1988;47:401–23.
    1. Dymarek R, Ptaszkowski K, Slupska L, Halski T, Taradaj J, Rosinczuk J. Effects of extracorporeal shock wave on upper and lower limb spasticity in post-stroke patients: a narrative review. Top Stroke Rehabil. 2016;23(4):293–303. doi: 10.1080/10749357.2016.1141492.
    1. Opara J, Taradaj J, Walewicz K, Rosinczuk J, Dymarek R. The Current State of Knowledge on the Clinical and Methodological Aspects of Extracorporeal Shock Waves Therapy in the Management of Post-Stroke Spasticity-Overview of 20 Years of Experiences. J Clin Med. 2021;10(2).
    1. Xiang J, Wang W, Jiang W, Qian Q. Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: a systematic review and meta-analysis of randomized controlled trials. J Rehabil Med. 2018;50(10):852–9. doi: 10.2340/16501977-2385.
    1. Blottner D, Luck G. Just in time and place: NOS/NO system assembly in neuromuscular junction formation. Microsc Res Tech. 2001;55(3):171–80. doi: 10.1002/jemt.1168.
    1. Bae H, Lee J-M, Lee K-H. The effects of extracorporeal shock wave therapy on spasticity in chronic stroke patients. Journal of the Korean Academy of Rehabilitation Medicine. 2010:663–9.
    1. Kenmoku T, Ochiai N, Ohtori S, Saisu T, Sasho T, Nakagawa K, et al. Degeneration and recovery of the neuromuscular junction after application of extracorporeal shock wave therapy. J Orthop Res. 2012;30(10):1660–5. doi: 10.1002/jor.22111.
    1. Leng Y, Lo WLA, Hu C, Bian R, Xu Z, Shan X, et al. The Effects of extracorporeal shock Wave Therapy on spastic muscle of the wrist Joint in Stroke Survivors: evidence from neuromechanical analysis. Front Neurosci. 2020;14:580762. doi: 10.3389/fnins.2020.580762.
    1. Amelio E, Manganotti P. Effect of shock wave stimulation on hypertonic plantar flexor muscles in patients with cerebral palsy: a placebo-controlled study. J Rehabil Med. 2010;42(4):339–43. doi: 10.2340/16501977-0522.
    1. Park DS, Kwon DR, Park GY, Lee MY. Therapeutic effect of extracorporeal shock Wave Therapy according to Treatment Session on gastrocnemius muscle spasticity in children with spastic cerebral palsy: a pilot study. Ann Rehabil Med. 2015;39(6):914–21. doi: 10.5535/arm.2015.39.6.914.
    1. Dawson J, Linsell L, Zondervan K, Rose P, Randall T, Carr A, et al. Epidemiology of hip and knee pain and its impact on overall health status in older adults. Rheumatology (Oxford) 2004;43(4):497–504. doi: 10.1093/rheumatology/keh086.
    1. Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021;325(6):568–78. doi: 10.1001/jama.2020.22171.
    1. Collins JE, Katz JN, Dervan EE, Losina E. Trajectories and risk profiles of pain in persons with radiographic, symptomatic knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2014;22(5):622–30. doi: 10.1016/j.joca.2014.03.009.
    1. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthr Lancet. 2015;386(9991):376–87. doi: 10.1016/S0140-6736(14)60802-3.
    1. Wang C-J, Sun Y-C, Wong T, Hsu S-L, Chou W-Y, Chang H-W. Extracorporeal shockwave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats. J Surg Res. 2012;178(1):196–205. doi: 10.1016/j.jss.2012.01.010.
    1. Wang C-J, Weng L-H, Ko J-Y, Wang J-W, Chen J-M, Sun Y-C, et al. Extracorporeal shockwave shows regression of Osteoarthritis of the knee in rats. J Surg Res. 2011;171(2):601–8. doi: 10.1016/j.jss.2010.06.042.
    1. Wu YT, Chang CN, Chen YM, Hu GC. Comparison of the effect of focused and radial extracorporeal shock waves on spastic equinus in patients with stroke: a randomized controlled trial. Eur J Phys Rehabil Med. 2018;54(4):518–25. doi: 10.23736/S1973-9087.17.04801-8.
    1. Chen TW, Lin CW, Lee CL, Chen CH, Chen YJ, Lin TY, et al. The efficacy of shock wave therapy in patients with knee osteoarthritis and popliteal cyamella. Kaohsiung J Med Sci. 2014;30(7):362–70. doi: 10.1016/j.kjms.2014.03.006.
    1. Sofat N, Ejindu V, Kiely P. What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology (Oxford) 2011;50(12):2157–65. doi: 10.1093/rheumatology/ker283.
    1. Wang CJ, Hsu SL, Weng LH, Sun YC, Wang FS. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats. BMC Musculoskelet Disord. 2013;14:44. doi: 10.1186/1471-2474-14-44.
    1. Zhao Z, Jing R, Shi Z, Zhao B, Ai Q, Xing G. Efficacy of extracorporeal shockwave therapy for knee osteoarthritis: a randomized controlled trial. J Surg Res. 2013;185(2):661–6. doi: 10.1016/j.jss.2013.07.004.
    1. Takahashi N, Wada Y, Ohtori S, Saisu T, Moriya H. Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons. Auton Neurosci. 2003;107(2):81–4. doi: 10.1016/S1566-0702(03)00134-6.
    1. Millar NL, Silbernagel KG, Thorborg K, Kirwan PD, Galatz LM, Abrams GD, et al. Tendinopathy Nat Rev Dis Primers. 2021;7(1):1. doi: 10.1038/s41572-020-00234-1.
    1. Rosso F, Bonasia DE, Marmotti A, Cottino U, Rossi R. Mechanical stimulation (pulsed Electromagnetic Fields “PEMF” and extracorporeal shock Wave Therapy “ESWT”) and Tendon Regeneration: a possible alternative. Front Aging Neurosci. 2015;7:211. doi: 10.3389/fnagi.2015.00211.
    1. Ge R, Zhu Q, Liu D, Zhang Q, Jiang S, Yu X, et al. Quantitative proteomics reveals potential anti-inflammatory protein targets of radial extracorporeal shock wave therapy in TNF-alpha-induced model of acute inflammation in primary human tenocytes. Heliyon. 2022;8(12):e12008. doi: 10.1016/j.heliyon.2022.e12008.
    1. Auersperg V, Trieb K. Extracorporeal shock wave therapy: an update. EFORT Open Rev. 2020;5(10):584–92. doi: 10.1302/2058-5241.5.190067.
    1. Gerdesmeyer L, Wagenpfeil S, Haake M, Maier M, Loew M, Wortler K, et al. Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff: a randomized controlled trial. JAMA. 2003;290(19):2573–80. doi: 10.1001/jama.290.19.2573.
    1. Malliaropoulos N, Thompson D, Meke M, Pyne D, Alaseirlis D, Atkinson H, et al. Individualised radial extracorporeal shock wave therapy (rESWT) for symptomatic calcific shoulder tendinopathy: a retrospective clinical study. BMC Musculoskelet Disord. 2017;18(1):513. doi: 10.1186/s12891-017-1873-x.
    1. Frassanito P, Cavalieri C, Maestri R, Felicetti G. Effectiveness of extracorporeal shock Wave Therapy and kinesio taping in calcific tendinopathy of the shoulder: a randomized controlled trial. Eur J Phys Rehabil Med. 2018;54(3):333–40. doi: 10.23736/S1973-9087.17.04749-9.
    1. Ozmen T, Koparal SS, Karatas O, Eser F, Ozkurt B, Gafuroglu TU. Comparison of the clinical and sonographic effects of ultrasound therapy, extracorporeal shock wave therapy, and Kinesio taping in lateral epicondylitis. Turk J Med Sci. 2021;51(1):76–83. doi: 10.3906/sag-2001-79.
    1. Johnson GW, Cadwallader K, Scheffel SB, Epperly TD. Treatment of lateral epicondylitis. Am Fam Physician. 2007;76(6):843–8.
    1. Shrivastava SK. Kailash. Shock wave treatment in medicine. J Biosci. 2005;30(2):269–75. doi: 10.1007/BF02703708.
    1. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980;2(8207):1265–8. doi: 10.1016/S0140-6736(80)92335-1.
    1. Chaussy CG, Tiselius HG. How can and should we optimize extracorporeal shockwave lithotripsy? Urolithiasis. 2018;46(1):3–17. doi: 10.1007/s00240-017-1020-z.
    1. Skolarikos A, Alivizatos G, de la Rosette J. Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur Urol. 2006;50(5):981–90. doi: 10.1016/j.eururo.2006.01.045.
    1. Dhar M, Denstedt JD. Imaging in diagnosis, treatment, and follow-up of stone patients. Adv Chronic Kidney Dis. 2009;16(1):39–47. doi: 10.1053/j.ackd.2008.10.005.
    1. Paterson RF, Lifshitz DA, Kuo RL, Siqueira TM, Jr, Lingeman JE. Shock wave lithotripsy monotherapy for renal calculi. Int Braz J Urol. 2002;28(4):291–301.
    1. Qian YY, Ru N, Chen H, Zou WB, Wu H, Pan J, et al. Rectal indometacin to prevent pancreatitis after extracorporeal shock wave lithotripsy (RIPEP): a single-centre, double-blind, randomised, placebo-controlled trial. Lancet Gastroenterol Hepatol. 2022;7(3):238–44. doi: 10.1016/S2468-1253(21)00434-9.
    1. Rassweiler JJ, Knoll T, Kohrmann KU, McAteer JA, Lingeman JE, Cleveland RO, et al. Shock wave technology and application: an update. Eur Urol. 2011;59(5):784–96. doi: 10.1016/j.eururo.2011.02.033.
    1. de Lima Morais TM, Meyer PF, de Vasconcellos LS, JC ES, de Farias IFEA. Effects of the extracorporeal shock wave therapy on the skin: an experimental study. Lasers Med Sci. 2019;34(2):389–96. doi: 10.1007/s10103-018-2612-8.
    1. Heimes D, Wiesmann N, Eckrich J, Brieger J, Mattyasovszky S, Proff P et al. In Vivo Modulation of Angiogenesis and Immune Response on a Collagen Matrix via Extracorporeal Shockwaves. Int J Mol Sci. 2020;21(20).
    1. Wu X, Wang Y, Fan X, Xu X, Sun W. Extracorporeal shockwave relieves endothelial injury and dysfunction in steroid-induced osteonecrosis of the femoral head via miR-135b targeting FOXO1: in vitro and in vivo studies. Aging. 2022;14(1):410–29. doi: 10.18632/aging.203816.
    1. Modena DAO, Soares CD, Candido EC, Chaim FDM, Cazzo E, Chaim EA. Effect of extracorporeal shock waves on inflammation and angiogenesis of integumentary tissue in obese individuals: stimulating repair and regeneration. Lasers Med Sci. 2022;37(2):1289–97. doi: 10.1007/s10103-021-03387-x.
    1. Ginini JG, Maor G, Emodi O, Shilo D, Gabet Y, Aizenbud D, et al. Effects of extracorporeal shock Wave Therapy on Distraction Osteogenesis in Rat Mandible. Plast Reconstr Surg. 2018;142(6):1501–9. doi: 10.1097/PRS.0000000000004980.
    1. Basoli V, Chaudary S, Cruciani S, Santaniello S, Balzano F, Ventura C, et al. Mechanical stimulation of fibroblasts by extracorporeal shock waves: modulation of cell activation and proliferation through a transient Proinflammatory Milieu. Cell Transpl. 2020;29:963689720916175. doi: 10.1177/0963689720916175.
    1. Vardi Y, Appel B, Jacob G, Massarwi O, Gruenwald I. Can low-intensity extracorporeal shockwave therapy improve erectile function? A 6-Month follow-up pilot study in patients with Organic Erectile Dysfunction. Eur Urol. 2010;58(2):243–8. doi: 10.1016/j.eururo.2010.04.004.
    1. Sokolakis I, Dimitriadis F, Teo P, Hatzichristodoulou G, Hatzichristou D, Giuliano F. The Basic Science behind low-intensity extracorporeal shockwave therapy for Erectile Dysfunction: a systematic scoping review of Pre-Clinical Studies. J Sex Med. 2019;16(2):168–94. doi: 10.1016/j.jsxm.2018.12.016.
    1. Goldberg D, Andriessen A, Gold M. Radial shockwave therapy for male erectile rejuvenation in a dermatology and/or medical aesthetic practice. J Cosmet Dermatol. 2019;18(6):1596–600. doi: 10.1111/jocd.13022.
    1. Gao L, Qian S, Tang Z, Li J, Yuan J. A meta-analysis of extracorporeal shock wave therapy for Peyronie’s disease. Int J Impot Res. 2016;28(5):161–6. doi: 10.1038/ijir.2016.24.
    1. Zhang D, Wang YL, Gong DX, Zhang ZX, Yu XT, Ma YW. Radial extracorporeal shock Wave Therapy as a Novel Agent for Benign Prostatic Hyperplasia Refractory to Current Medical Therapy. Am J Mens Health. 2019;13(1):1557988319831899. doi: 10.1177/1557988319831899.
    1. Wu WL, Bamodu OA, Wang YH, Hu SW, Tzou KY, Yeh CT et al. Extracorporeal Shockwave Therapy (ESWT) Alleviates Pain, Enhances Erectile Function and Improves Quality of Life in Patients with Chronic Prostatitis/Chronic Pelvic Pain Syndrome. J Clin Med. 2021;10(16).
    1. Dymarek R, Ptaszkowski K, Ptaszkowska L, Kowal M, Sopel M, Taradaj J, et al. Shock waves as a treatment modality for spasticity reduction and recovery improvement in post-stroke adults - current evidence and qualitative systematic review. Clin Interv Aging. 2020;15:9–28. doi: 10.2147/CIA.S221032.
    1. Manganotti P, Amelio E, Guerra C. Shock wave over hand muscles: a neurophysiological study on peripheral conduction nerves in normal subjects. Muscles Ligaments Tendons J. 2012;2(2):104–7.
    1. Wang S, Yin C, Han X, Guo A, Chen X, Liu S, et al. Improved Healing of Diabetic Foot Ulcer upon Oxygenation therapeutics through Oxygen-Loading Nanoperfluorocarbon triggered by Radial extracorporeal shock Wave. Oxid Med Cell Longev. 2019;2019:5738368. doi: 10.1155/2019/5738368.
    1. Xing R, Yang J, Wang R, Wang Y. Extracorporeal shock wave therapy for treating primary dysmenorrhea: a randomized controlled trial. Med (Baltim) 2021;100(5):e23798. doi: 10.1097/MD.0000000000023798.
    1. Li Y, Zhu Y, Xie Z, Jiang C, Li F. Long-term radial extracorporeal shock wave therapy for neurogenic heterotopic ossification after spinal cord injury: a case report. J Spinal Cord Med. 2022;45(3):476–80. doi: 10.1080/10790268.2020.1760507.
    1. Troia S, Moreira AM, Pisco D, Noites A, Vale AL, Carvalho P, et al. Effect of shock wave therapy associated with aerobic exercise on cellulite: a randomized controlled trial. J Cosmet Dermatol. 2021;20(6):1732–42. doi: 10.1111/jocd.13791.

Source: PubMed

3
Abonnieren