Biomarkers as Prognostic Predictors and Therapeutic Guide in Critically Ill Patients: Clinical Evidence

Rosa Méndez Hernández, Fernando Ramasco Rueda, Rosa Méndez Hernández, Fernando Ramasco Rueda

Abstract

A biomarker is a molecule that can be measured in a biological sample in an objective, systematic, and precise way, whose levels indicate whether a process is normal or pathological. Knowing the most important biomarkers and their characteristics is the key to precision medicine in intensive and perioperative care. Biomarkers can be used to diagnose, in assessment of disease severity, to stratify risk, to predict and guide clinical decisions, and to guide treatments and response to them. In this review, we will analyze what characteristics a biomarker should have and how to ensure its usefulness, and we will review the biomarkers that in our opinion can make their knowledge more useful to the reader in their clinical practice, with a future perspective. These biomarkers, in our opinion, are lactate, C-Reactive Protein, Troponins T and I, Brain Natriuretic Peptides, Procalcitonin, MR-ProAdrenomedullin and BioAdrenomedullin, Neutrophil/lymphocyte ratio and lymphopenia, Proenkephalin, NefroCheck, Neutrophil gelatinase-associated lipocalin (NGAL), Interleukin 6, Urokinase-type soluble plasminogen activator receptor (suPAR), Presepsin, Pancreatic Stone Protein (PSP), and Dipeptidyl peptidase 3 (DPP3). Finally, we propose an approach to the perioperative evaluation of high-risk patients and critically ill patients in the Intensive Care Unit (ICU) based on biomarkers.

Keywords: biomarkers; critical care; infection; organ failure; perioperative risk assessment; point of care; precision medicine; pulmonary congestion; sepsis; systemic congestion.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Hamburg M.A., Collins F.S. The Path to Personalized Medicine. N. Engl. J. Med. 2010;363:301–304. doi: 10.1056/NEJMp1006304.
    1. Collins F.S., Varmus H. A New Initiative on Precision Medicine. N. Engl. J. Med. 2015;372:793–795. doi: 10.1056/NEJMp1500523.
    1. von Groote T., Meersch-Dini M. Biomarkers for the Prediction and Judgement of Sepsis and Sepsis Complications: A Step towards precision medicine? J. Clin. Med. 2022;11:5782. doi: 10.3390/jcm11195782.
    1. Huang D.T., Ramirez P. Biomarkers in the ICU: Less is more? Yes. Intensive Care Med. 2021;47:94–96. doi: 10.1007/s00134-020-06049-8.
    1. Moons K.G.M. Criteria for scientific evaluation of novel markers: A perspective. Clin. Chem. 2010;56:537–541. doi: 10.1373/clinchem.2009.134155.
    1. Hlatky M.A., Greenland P., Arnett D.K., Ballantyne C.M., Criqui M.H., Elkind M.S., Go A.S., Harrell Jr F.E., Hong Y., Howard B.V., et al. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from American heartassociation. Circulation. 2009;119:2408–2416. doi: 10.1161/CIRCULATIONAHA.109.192278.
    1. Bakker J., Postelnicu R., Mukherjee V. Lactate: Where Are We Now? Crit. Care Clin. 2020;36:115–124. doi: 10.1016/j.ccc.2019.08.009.
    1. Parikh C.R., Thiessen-Philbrook H. Key Concepts and Limitations of Statistical Methods for Evaluating Biomarkers of Kidney Disease. J. Am. Soc. Nephrol. 2014;25:1621–1629. doi: 10.1681/ASN.2013121300.
    1. Ray P., Manach Y.L., Riou B., Houle T.T. Statistical evaluation of a biomarker. Anesthesiology. 2010;112:1023–1040. doi: 10.1097/ALN.0b013e3181d47604.
    1. Bewick V., Cheek L., Ball J. Statistics review 13: Receiver operating characteristic curves. Crit. Care. 2004;8:508. doi: 10.1186/cc3000.
    1. Jenniskens K., Naaktgeboren C.A., Reitsma J.B., Hooft L., Moons K.G.M., van Smeden M. Forcing dichotomous disease classification from reference standards leads to bias in diagnostic accuracy estimates: A simulation study. J. Clin. Epidemiol. 2019;11:1–10. doi: 10.1016/j.jclinepi.2019.03.002.
    1. Janković R.J., Marković D.Z., Sokolović D.T., Zdravković I., Sorbello M. Clinical indices and biomarkers for perioperative cardiac risk stratification: An update. Minerva Anestesiol. 2017;83:92–401. doi: 10.23736/S0375-9393.16.11545-7.
    1. Calfee C.S., Delucchi K., Parsons P.E., Thompson B.T., Ware L.B., Matthay M.A. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2014;933:611–620. doi: 10.1016/S2213-2600(14)70097-9.
    1. Pearse R.M., Moreno R.P., Bauer P., Pelosi P., Metnitz P., Spies C., Vallet B., Vincent J.L., Hoeft A., Rhodes A. European Surgical Outcomes Study (EuSOS) group for the Trials groups of the European Society of Intensive Care Medicine and the European Society of Anaesthesiology. Mortality after surgery in Europe: A 7 day cohort study. Lancet. 2012;380:1059–1065. doi: 10.1016/S0140-6736(12)61148-9.
    1. Pinto B.B., Chew M., Buse G.L., Walder G. The concept of peri-operative medicine to prevent major adverse events and improve outcome in surgical patients A narrative review. Eur. J. Anaesthesiol. 2019;36:889–903. doi: 10.1097/EJA.0000000000001067.
    1. Aiken L.H., Sloane D., Bruyneel L., den Heede K.V. #44 European countries: A retrospective observational study. Lancet. 2015;383:1824–1830. doi: 10.1016/S0140-6736(13)62631-8.
    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Hernández G., Ospina-Tascón G.A., Damiani L.P., Estenssoro E., Dubin A., Hurtado J., Friedman G., Castro R., Alegría L., Teboul J.L., et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients with Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321:654–664. doi: 10.1001/jama.2019.0071.
    1. Hernandez G., Bellomo R., Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019;45:82–85. doi: 10.1007/s00134-018-5213-x.
    1. Koozi H., Lengquist M., Frigyesi A. C-reactive protein as a prognostic factor in intensive care admissions for sepsis: A Swedish multicenter study. J. Crit. Care. 2020;56:73–79. doi: 10.1016/j.jcrc.2019.12.009.
    1. Sproston N.R., Ashworth J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018;9:754. doi: 10.3389/fimmu.2018.00754.
    1. Kørner H., Nielsen H.J., Søreide J.A., Nedrebø B.S., Søreide K., Knapp J.C. Diagnostic accuracy of C-reactive protein for intraabdominal infections after colorectal resections. J. Gastrointest. Surg. 2009;13:1599–1606. doi: 10.1007/s11605-009-0928-1.
    1. Travlos A., Bakakos A., Vlachos K.F., Rovina N., Koulouris N., Bakakos P. C-Reactive Protein as a Predictor of Survival and Length of Hospital Stay in Community-Acquired Pneumonia. J. Pers. Med. 2022;12:1710. doi: 10.3390/jpm12101710.
    1. Saito K., Sugawara H., Ichihara K., Watanabe T., Ishii A., Fukuchi T. Prediction of 72-hour mortality in patients with extremely high serum C-reactive protein levels using a novel weighted average of risk scores. PLoS ONE. 2021;16:e0246259. doi: 10.1371/journal.pone.0246259.
    1. Chauin A. The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other Than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vasc. Health Risk Manag. 2021;17:601–617. doi: 10.2147/VHRM.S327661.
    1. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018) J. Am. Coll Cardiol. 2018;72:2231–2264. doi: 10.1016/j.jacc.2018.08.1038.
    1. Abdu F.A., Mohammed A.-Q., Liu L., Xu Y., Che W. Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA): A Review of the Current Position. Cardiology. 2020;145:543–552. doi: 10.1159/000509100.
    1. Kakihana Y., Ito T., Nakahara M., Yamaguchi K., Yasuda T. Sepsis-induced myocardial dysfunction: Pathophysiology and management. J. Intensive Care. 2016;4:22. doi: 10.1186/s40560-016-0148-1.
    1. Khan J., Alonso-Coello P., Devereaux P.J. Myocardial injury after noncardiac surgery. Curr. Opin. Cardiol. 2014;29:307–311. doi: 10.1097/HCO.0000000000000069.
    1. Devereaux P.J., Lamy A., Chan M.T.V., Allard R.V., Lomivorotov V.V., Landoni G., Zheng H., Paparella D., McGillion M.H., Belley-Côté E.P., et al. VISION Cardiac Surgery Investigators. High-Sensitivity Troponin I after Cardiac Surgery and 30-Day Mortality. N. Engl. J. Med. 2022;386:827–836. doi: 10.1056/NEJMoa2000803.
    1. Mallick A., Januzzi J.L. Biomarkers in acute heart failure. Rev. Espanola Cardiol. Engl. Ed. 2015;68:514–525. doi: 10.1016/j.recesp.2015.02.009.
    1. Duceppe E., Parlow J., MacDonald P., Lyons K., McMullen M., Srinathan S., Graham M., Tandon V., Styles K., Bessissow A., et al. Canadian Cardiovascular Society Guidelines on Perioperative Cardiac Risk Assessment and Management for Patients Who Undergo Noncardiac Surgery. Can. J. Cardiol. 2017;33:17–32. doi: 10.1016/j.cjca.2016.09.008.
    1. Rodseth R.N., Biccard B.M., Le Manach Y., Sessler D.I., Lurati Buse G.A., Thabane L., Schutt R.C., Bolliger D., Cagini L., Cardinale D., et al. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery: B-type natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: A systematic review and individual patient data meta-analysis. J. Am. Coll Cardiol. 2014;63:170–180. doi: 10.1016/j.jacc.2013.08.1630.
    1. Karthikeyan G., Moncur R.A., Levine O., Heels-Ansdell D., Chan M.T., Alonso-Coello P., Yusuf S., Sessler D., Villar J.C., Berwanger O., et al. Is a pre-operative brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide measurement an independent predictor of adverse cardiovascular outcomes within 30 days of noncardiac surgery? A systematic review and meta-analysis of observational studies. J. Am. Coll Cardiol. 2009;54:1599–1606. doi: 10.1016/j.jacc.2009.06.028.
    1. Álvarez Zurro C., Planas Roca A., Alday Muñoz E., Vega Piris L., Ramasco Rueda F., Méndez Hernández R. High levels of preoperative and postoperative N terminal B-type natriuretic propeptide influence mortality and cardiovascular complications after noncardiac surgery. Eur. J. Anaesthesiol. 2016;33:444–449. doi: 10.1097/EJA.0000000000000419.
    1. L’Heureux M., Sternberg M., Brath L., Turlington J., Kashiouris M.G. Sepsis-Induced Cardiomyopathy: A Comprehensive Review. Curr. Cardiol. Rep. 2020;22:35. doi: 10.1007/s11886-020-01277-2.
    1. Stienen S., Salah K., Moons A.H., Bakx A.L., van Pol P., Kortz R.A.M., Ferreira J.P., Marques I., Schroeder-Tanka J.M., Keijer J.T., et al. NT-proBNP (N-Terminal pro-B-Type Natriuretic Peptide)-Guided Therapy in Acute Decompensated Heart Failure: PRIMA II Randomized Controlled Trial (Can NT-ProBNP-Guided Therapy During Hospital Admission for Acute Decompensated Heart Failure Reduce Mortality and Readmissions?) Circulation. 2018;137:1671–1683. doi: 10.1161/CIRCULATIONAHA.117.029882.
    1. Malbrain M.L.N.G., Van Regenmortel N., Saugel B., De Tavernier B., Van Gaal P.J., Joannes-Boyau O., Teboul J.L., Rice T.W., Mythen M., Monnet X. Principles of fluid management and stewardship in septic shock: It is time to consider the four D’s and the four phases of fluid therapy. Ann. Intensive Care. 2018;8:66. doi: 10.1186/s13613-018-0402-x.
    1. Koratala A., Kazory A. Natriuretic Peptides as Biomarkers for Congestive States: The Cardiorenal Divergence. Dis. Markers. 2017;2017:1454986. doi: 10.1155/2017/1454986.
    1. Pandompatam G., Kashani K., Vallabhajosyula S. The role of natriuretic peptides in the management, outcomes and prognosis of sepsis and septic shock. Rev. Bras. Ter. Intensiva. 2019;31:3. doi: 10.5935/0103-507X.20190060.
    1. Vallabhajosyula S., Wang Z., Murad M.H., Vallabhajosyula S., Sundaragiri P.R., Kashani K., Miller W.L., Jaffe A.S., Vallabhajosyula S. Natriuretic Peptides to Predict Short-Term Mortality in Patients With Sepsis: A Systematic Review and Meta-analysis. Mayo Clin. Proc. Innov. Qual. Outcomes. 2020;4:50–64. doi: 10.1016/j.mayocpiqo.2019.10.008.
    1. Carpenter C.R., Keim S.M., Worster A., Rosen P. Brain natriuretic peptide in the evaluation of emergency department dyspnea: Is there a role? J. Emerg. Med. 2012;42:197–205. doi: 10.1016/j.jemermed.2011.07.014.
    1. Januzzi J.L., Jr., Chen-Tournoux A.A., Christenson R.H., Doros G., Hollander J.E., Levy P.D., Nagurney J.T., Nowak R.M., Pang P.S., Patel D., et al. ICON-RELOADED Investigators. N-Terminal Pro-B-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study. J. Am. Coll Cardiol. 2018;71:1191–1200. doi: 10.1016/j.jacc.2018.01.021.
    1. Xu H.-G., Tian M., Pan S.-Y. Clinical utility of procalcitonin and its association with pathogenic microorganisms. Crit. Rev. Clin. Lab. Sci. 2022;59:93–111. doi: 10.1080/10408363.2021.1988047.
    1. Van Nieuwkoop C., Bonten T.N., van’t Wout J.W., Kuijper E.J., Groeneveld G.H., Becker M.J., Koster T., Wattel-Louis G.H., Delfos N.M., Ablij H.C., et al. Procalcitonin reflects bacteremia and bacterial load in urosepsis syndrome: A prospective observational study. Crit. Care. 2010;14:R206. doi: 10.1186/cc9328.
    1. Azzini A.M., Dorizzi R.M., Sette P., Vecchi M., Coledan I., Righi E., Tacconelli E. A 2020 review on the role of procalcitonin in different clinical settings: An update conducted with the tools of the Evidence Based Laboratory Medicine. Ann. Transl Med. 2020;8:610. doi: 10.21037/atm-20-1855.
    1. Covington E.W., Roberts M.Z., Dong J. Procalcitonin Monitoring as a Guide for Antimicrobial Therapy: A Review of Current Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018;38:569–581. doi: 10.1002/phar.2112.
    1. Schuetz P., Beishuizen A., Broyles M., Ferrer R., Gavazzi G., Gluck E.H., González Del Castillo J., Jensen J.U., Kanizsai P.L., Kwa A.L.H., et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem Lab. Med. 2019;57:1308–1318. doi: 10.1515/cclm-2018-1181.
    1. Rhee C. Using Procalcitonin to Guide Antibiotic Therapy. Open Forum Infect. Dis. 2017;4:ofw249. doi: 10.1093/ofid/ofw249.
    1. Schuetz P. Procalcitonin Algorithms for Antibiotic Therapy Decisions: A Systematic Review of Randomized Controlled Trials and Recommendations for Clinical Algorithms. Arch. Intern. Med. 2011;171:1322. doi: 10.1001/archinternmed.2011.318.
    1. Heffernan A.J., Denny K.J. Host Diagnostic Biomarkers of Infection in the ICU: Where are we and where are we going? Curr. Infect. Dis. Rep. 2021;23:4. doi: 10.1007/s11908-021-00747-0.
    1. Evans L., Rhodes A., Alhazzani W., Antonelli M., Coopersmith C.M., French C., Machado F.R., Mcintyre L., Ostermann M., Prescott H.C., et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47:1181–1247. doi: 10.1007/s00134-021-06506-y.
    1. Leli C., Ferranti M., Moretti A., Al Dhahab Z.S., Cenci E., Mencacci A. Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections. Dis. Markers. 2015;2015:701480. doi: 10.1155/2015/701480.
    1. Bassetti M., Russo A., Righi E., Dolso E., Merelli M., D’Aurizio F., Sartor A., Curcio F. Role of procalcitonin in bacteremic patients and its potential use in predicting infection etiology. Expert Rev. Anti Infect. Ther. 2019;17:99–105. doi: 10.1080/14787210.2019.1562335.
    1. Kitamura K., Kangawa K., Eto T. Adrenomedullin and PAMP: Discovery, structures, and cardiovascular functions. Microsc. Res. Tech. 2002;57:3–13. doi: 10.1002/jemt.10052.
    1. Hinson J.P., Kapas S., Smith D.M. Adrenomedullin, a multifunctional regulatory peptide. Endocr. Rev. 2000;21:138–167. doi: 10.1210/er.21.2.138.
    1. Struck J., Tao C., Morgenthaler N.G., Bergmann A. Identification of an Adrenomedullin precursor fragment in plasma of sepsis patients. Peptides. 2004;25:1369–1372. doi: 10.1016/j.peptides.2004.06.019.
    1. Krintus M., Kozinski M., Braga F., Kubica J., Sypniewska G., Panteghini M. Plasma midregional proadrenomedullin (MR-proADM) concentrations and their biological determinants in a reference population. Clin. Chem. Lab. Med. 2018;56:1161–1168. doi: 10.1515/cclm-2017-1044.
    1. Nishikimi T., Kuwahara K., Nakagawa Y., Kangawa K., Nakao K. Adrenomedullin in cardiovascular disease: A useful biomarker, its pathological roles and therapeutic application. Curr. Protein Pept. Sci. 2013;14:256–267. doi: 10.2174/13892037113149990045.
    1. Maisel A., Mueller C., Nowak R.M., Peacock W.F., Ponikowski P., Mockel M., Hogan C., Wu A.H., Richards M., Clopton P., et al. Midregion prohormone adrenomedullin and prognosis in patients presenting with acute dyspnea: Results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll Cardiol. 2011;58:1057–1067. doi: 10.1016/j.jacc.2011.06.006.
    1. Bernal-Morell E., García-Villalba E., Vera M.D.C., Medina B., Martinez M., Callejo V., Valero S., Cinesi C., Piñera P., Alcaraz A., et al. Usefulness of midregional pro-adrenomedullin as a marker of organ damage and predictor of mortality in patients with sepsis. J. Infect. 2018;76:249–257. doi: 10.1016/j.jinf.2017.12.003.
    1. Andaluz-Ojeda D., Nguyen H.B., Meunier-Beillard N., Cicuéndez R., Quenot J.P., Calvo D., Dargent A., Zarca E., Andrés C., Nogales L., et al. Superior accuracy of mid-regional proadrenomedullin for mortality prediction in sepsis with varying levels of illness severity. Ann. Intensive Care. 2017;7:15. doi: 10.1186/s13613-017-0238-9.
    1. Schoe A., Schippers E.F., Struck J., Ebmeyer S., Klautz R.J., de Jonge E., van Dissel J.T. Postoperative pro-adrenomedullin levels predict mortality in thoracic surgery patients: Comparison with Acute Physiology and Chronic Health Evaluation IV Score*. Crit. Care Med. 2015;43:373–381. doi: 10.1097/CCM.0000000000000709.
    1. Csordas A., Nietlispach F., Schuetz P., Huber A., Müller B., Maisano F., Taramasso M., Moarof I., Obeid S., Stähli B.E., et al. Midregional Proadrenomedullin Improves Risk Stratification beyond Surgical Risk Scores in Patients Undergoing Transcatheter Aortic Valve Replacement. PLoS ONE. 2015;10:e0143761. doi: 10.1371/journal.pone.0143761.
    1. Ramasco Rueda F., Planas Roca A., Figuerola Tejerina A., Méndez Hernández R., Gilsanz Rodriguez R. Pro-adrenomedulina preoperatoria como predictor de la necesidad de soporte orgánico postoperatorio en pacientes programados para cirugía abdominal mayor. Rev. Esp. Anestesiol. Reanim. 2020;67:8–14. doi: 10.1016/j.redar.2019.10.002.
    1. Andrés C., Andaluz-Ojeda D., Cicuendez R., Nogales L., Martín S., Martin-Fernandez M., Almansa R., Calvo D., Esteban-Velasco M.C., Vaquero-Roncero L.M., et al. MR-proADM to detect specific types of organ failure in infection. Eur. J. Clin. Investig. 2020;50:e13246. doi: 10.1111/eci.13246.
    1. Ramasco Rueda F. Ph.D. Thesis. Universidad Autónoma de Madrid; Madrid, Spain: Dec 19, 2022. [(accessed on 12 February 2023)]. Utilidad de la Determinación Preoperatoria de los Niveles Séricos de MR-Proadrenomedulina para Predecir la Necesidad de Soporte Orgánico Postoperatorio en Cirugía Oncológica Abdominal. Available online: .
    1. Samson W.K., Resch Z.T., Murphy T.C., Vargas T.T., Schell D.A. Adrenomedullin: Is There Physiological Relevance in the Pathology and Pharmacology? Physiology. 1999;14:255–259. doi: 10.1152/physiologyonline.1999.14.6.255.
    1. Caironi P., Latini R., Struck J., Hartmann O., Bergmann A., Maggio G., Cavana M., Tognoni G., Pesenti A., Gattinoni L., et al. ALBIOS Study Investigators. Circulating Biologically Active Adrenomedullin (bio-ADM) Predicts Hemodynamic Support Requirement and Mortality During Sepsis. Chest. 2017;152:312–320. doi: 10.1016/j.chest.2017.03.035.
    1. Gayat E., Cariou A., Deye N., Vieillard-Baron A., Jaber S., Damoisel C., Lu Q., Monnet X., Rennuit I., Azoulay E., et al. Determinants of long-term outcome in ICU survivors: Results from the FROG-ICU study. Crit. Care. 2018;22:8. doi: 10.1186/s13054-017-1922-8.
    1. Mebazaa A., Geven C., Hollinger A., Wittebole X., Chousterman B.G., Blet A., Gayat E., Hartmann O., Scigalla P., Struck J., et al. AdrenOSS-1 study investigators. Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: The prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study. Crit. Care. 2018;22:354. doi: 10.1186/s13054-018-2243-2.
    1. Laterre P.F., Pickkers P., Marx G., Wittebole X., Meziani F., Dugernier T., Huberlant V., Schuerholz T., François B., Lascarrou J.B., et al. AdrenOSS-2 study participants. Safety and tolerability of non-neutralizing adrenomedullin antibody adrecizumab (HAM8101) in septic shock patients: The AdrenOSS-2 phase 2a biomarker-guided trial. Intensive Care Med. 2021;47:1284–1294. doi: 10.1007/s00134-021-06537-5.
    1. Simon T.P., Martin L., Doemming S., Humbs A., Bruells C., Kopp R., Hartmann O., Struck J., Bergmann A., Marx G., et al. Plasma adrenomedullin in critically ill patients with sepsis after major surgery: A pilot study. J. Crit. Care. 2017;38:68–72. doi: 10.1016/j.jcrc.2016.10.017.
    1. Egerstedt A., Czuba T., Bronton K., Lejonberg C., Ruge T., Wessman T., Rådegran G., Schulte J., Hartmann O., Melander O., et al. Bioactive adrenomedullin for assessment of venous congestion in heart failure. ESC Heart Fail. 2022;9:3543–3555. doi: 10.1002/ehf2.14018.
    1. Núñez J., de la Espriella R., Rossignol P., Voors A.A., Mullens W., Metra M., Chioncel O., Januzzi J.L., Mueller C., Richards A.M., et al. Congestion in heart failure: A circulating biomarker-based perspective. A review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology. Eur. J. Heart Fail. 2022;24:1751–1766. doi: 10.1002/ejhf.2664.
    1. Farkas J.D. The complete blood count to diagnose septic shock. J. Thorac. Dis. 2020;12:S16–S21. doi: 10.21037/jtd.2019.12.63.
    1. Hwang S.Y., Shin T.G., Jo I.J., Jeon K., Suh G.Y., Lee T.R., Yoon H., Cha W.C., Sim M.S. Neutrophil-to-lymphocyte ratio as a prognostic marker in critically-ill septic patients. Am. J. Emerg. Med. 2017;35:234–239. doi: 10.1016/j.ajem.2016.10.055.
    1. Curbelo J., Luquero Bueno S., Galván-Román J.M., Ortega-Gómez M., Rajas O., Fernández-Jiménez G., Vega-Piris L., Rodríguez-Salvanes F., Arnalich B., Díaz A., et al. Inflammation biomarkers in blood as mortality predictors in community-acquired pneumonia admitted patients: Importance of comparison with neutrophil count percentage or neutrophil-lymphocyte ratio. PLoS ONE. 2017;12:e0173947. doi: 10.1371/journal.pone.0212915. Erratum in PLoS ONE 2019, 14, e0212915.
    1. Surhonne N., Hebri C., Kannan S., Duggappa D.R., Rs R.R., Mapari C.G. The effect of anesthetic techniques on neutrophil to lymphocyte ratio in patients undergoing infraumbilical surgeries. Korean J. Anesthesiol. 2019;72:458–465. doi: 10.4097/kja.d.19.00022.
    1. Ying H.Q., Deng Q.W., He B.S., Pan Y.Q., Wang F., Sun H.L., Chen J., Liu X., Wang S.K. The prognostic value of preoperative NLR, d-NLR, PLR and LMR for predicting clinical outcome in surgical colorectal cancer patients. Med. Oncol. 2014;31:305. doi: 10.1007/s12032-014-0305-0.
    1. Bermejo-Martin J.F., Cilloniz C., Mendez R., Almansa R., Gabarrus A., Ceccato A., Torres A., Menendez R., NEUMONAC group Lymphopenic Community Acquired Pneumonia (L-CAP), an Immunological Phenotype Associated with Higher Risk of Mortality. eBioMedicine. 2017;24:231–236. doi: 10.1016/j.ebiom.2017.09.023.
    1. Zhang H.J., Qi G.Q., Gu X., Zhang X.Y., Fang Y.F., Jiang H., Zhao Y.J. Lymphocyte blood levels that remain low can predict the death of patients with COVID-19. Medicine. 2021;100:e26503. doi: 10.1097/MD.0000000000026503.
    1. Bellomo R., Ronco C., Mehta R.L., Asfar P., Boisramé-Helms J., Darmon M., Diehl J.L., Duranteau J., Hoste E.A.J., Olivier J.B., et al. Acute kidney injury in the ICU: From injury to recovery: Reports from the 5th Paris International Conference. Ann. Intensive Care. 2017;7:49. doi: 10.1186/s13613-017-0260-y.
    1. Khwaja A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pract. 2012;120:c179–c184. doi: 10.1159/000339789.
    1. Zhang W.R., Parikh C.R. Biomarkers of Acute and Chronic Kidney Disease. Annu. Rev. Physiol. 2019;81:309–333. doi: 10.1146/annurev-physiol-020518-114605.
    1. Schrezenmeier E.V., Barasch J., Budde K., Westhoff T., Schmidt-Ott K.M. Biomarkers in acute kidney injury—Pathophysiological basis and clinical performance. Acta Physiol. (Oxf) 2017;219:554–572. doi: 10.1111/apha.12764.
    1. Khorashadi M., Beunders R., Pickkers P., Legrand M. Proenkephalin: A New Biomarker for Glomerular Filtration Rate and Acute Kidney Injury. Nephron. 2020;144:655–661. doi: 10.1159/000509352.
    1. Beunders R., van Groenendael R., Leijte G.P., Kox M., Pickkers P. Proenkephalin Compared to Conventional Methods to Assess Kidney Function in Critically Ill Sepsis Patients. Shock. 2020;54:308–314. doi: 10.1097/SHK.0000000000001510.
    1. Caironi P., Latini R., Struck J., Hartmann O., Bergmann A., Bellato V., Ferraris S., Tognoni G., Pesenti A., Gattinoni L., et al. ALBIOS Study Investigators. Circulating Proenkephalin, Acute Kidney Injury, and Its Improvement in Patients with Severe Sepsis or Shock. Clin. Chem. 2018;64:1361–1369. doi: 10.1373/clinchem.2018.288068.
    1. von Groote T., Albert F., Meersch M., Koch R., Porschen C., Hartmann O., Bergmann D., Pickkers P., Zarbock A. Proenkephalin A 119-159 predicts early and successful liberation from renal replacement therapy in critically ill patients with acute kidney injury: A post hoc analysis of the ELAIN trial. Crit. Care. 2022;26:333. doi: 10.1186/s13054-022-04217-4.
    1. Hollinger A., Wittebole X., François B., Pickkers P., Antonelli M., Gayat E., Chousterman B.G., Lascarrou J.B., Dugernier T., Di Somma S., et al. Proenkephalin A 119-159 (Penkid) Is an Early Biomarker of Septic Acute Kidney Injury: The Kidney in Sepsis and Septic Shock (Kid-SSS) Study. Kidney Int. Rep. 2018;3:1424–1433. doi: 10.1016/j.ekir.2018.08.006.
    1. Di Leo L., Nalesso F., Garzotto F., Xie Y., Yang B., Virzì G.M., Passannante A., Bonato R., Carta M., Giavarina D., et al. Predicting Acute Kidney Injury in Intensive Care Unit Patients: The Role of Tissue Inhibitor of Metalloproteinases-2 and Insulin-Like Growth Factor-Binding Protein-7 Biomarkers. Blood Purif. 2018;45:270–277. doi: 10.1159/000485591.
    1. Tai Q., Yi H., Wei X., Xie W., Zeng O., Zheng D., Sun J., Wang G., Wang S., Liu G. The Accuracy of Urinary TIMP-2 and IGFBP7 for the Diagnosis of Cardiac Surgery-Associated Acute Kidney Injury: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2020;35:1013–1025. doi: 10.1177/0885066618807124.
    1. Guzzi L.M., Bergler T., Binnall B., Engelman D.T., Forni L., Germain M.J., Gluck E., Göcze I., Joannidis M., Koyner J.L., et al. Clinical use of [TIMP-2]•[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: Guidance from an expert panel. Crit. Care. 2019;23:225. doi: 10.1186/s13054-019-2504-8.
    1. Clerico A., Galli C., Fortunato A., Ronco C. Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: A review of the laboratory characteristics and clinical evidences. Clin. Chem. Lab. Med. 2012;50:9. doi: 10.1515/cclm-2011-0814.
    1. Devarajan P. Neutrophil gelatinase-associated lipocalin--an emerging troponin for kidney injury. Nephrol. Dial. Transplant. 2008;23:3737–3743. doi: 10.1093/ndt/gfn531.
    1. de Geus H.R.H., Ronco C., Haase M., Jacob L., Lewington A., Vincent J.-L. The cardiac surgery–associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage. J. Thorac. Cardiovasc. Surg. 2016;151:1476–1481. doi: 10.1016/j.jtcvs.2016.01.037.
    1. De Geus H.R.H., Bakker J., Lesaffre E.M.E.H., le Noble J.L.M.L. Neutrophil Gelatinase-associated Lipocalin at ICU Admission Predicts for Acute Kidney Injury in Adult Patients. Am. J. Respir. Crit. Care Med. 2011;183:907–914. doi: 10.1164/rccm.200908-1214OC.
    1. Ware L.B. Biomarkers in Critical Illness: New Insights and Challenges for the Future. Am. J. Respir Crit. Care Med. 2017;196:944–945. doi: 10.1164/rccm.201704-0831ED.
    1. Kavanaugh A. Interleukin-6 inhibitors in the treatment of rheumatoid arthritis. Ther. Clin. Risk Manag. 2008;4:767–775. doi: 10.2147/TCRM.S3470.
    1. Coomes E.A., Haghbayan H. Interleukin-6 in Covid-19: A systematic review and META-ANALYSIS. Rev. Med. Virol. 2020;30:1–9. doi: 10.1002/rmv.2141.
    1. Jawa R.S., Anillo S., Huntoon K., Baumann H., Kulaylat M. Interleukin-6 in Surgery, Trauma, and Critical Care Part II: Clinical Implications. J. Intensive Care Med. 2011;26:73–87. doi: 10.1177/0885066610384188.
    1. Molano Franco D., Arevalo-Rodriguez I., Roqué I., Figuls M., Montero Oleas N.G., Nuvials X., Zamora J. Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst. Rev. 2019:CD011811. doi: 10.1002/14651858.CD011811.pub2.
    1. Donadello K., Scolletta S., Covajes C., Vincent J.-L. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.
    1. Koch A., Tacke F. Why high suPAR is not super-diagnostic, prognostic and potential pathogenic properties of a novel biomarker in the ICU. Crit. Care. 2011;15:1020. doi: 10.1186/cc10577.
    1. Savva A., Raftogiannis M., Baziaka F., Routsi C., Antonopoulou A., Koutoukas P., Tsaganos T., Kotanidou A., Apostolidou E., Giamarellos-Bourboulis E.J., et al. Soluble urokinase plasminogen activator receptor (suPAR) for assessment of disease severity in ventilator-associated pneumonia and sepsis. J. Infect. 2011;63:344–350. doi: 10.1016/j.jinf.2011.07.016.
    1. Huang Q., Xiong H., Yan P., Shuai T., Liu J., Zhu L., Lu J., Yang K., Liu J. The Diagnostic and Prognostic Value of suPAR in Patients with Sepsis: A Systematic Review and Meta-Analysis. Shock. 2020;53:416–425. doi: 10.1097/SHK.0000000000001434.
    1. Giamarellos-Bourboulis E.J., Norrby-Teglund A., Mylona V., Savva A., Tsangaris I., Dimopoulou I., Mouktaroudi M., Raftogiannis M., Georgitsi M., Linnér A., et al. Risk assessment in sepsis: A new prognostication rule by APACHE II score and serum soluble urokinase plasminogen activator receptor. Crit. Care. 2012;16:R149. doi: 10.1186/cc11463.
    1. Chalkias A., Laou E., Kolonia K., Ragias D., Angelopoulou Z., Mitsiouli E., Kallemose T., Smith-Hansen L., Eugen-Olsen J., Arnaoutoglou E. Elevated preoperative suPAR is a strong and independent risk marker for postoperative complications in patients undergoing major noncardiac surgery (SPARSE) Surgery. 2022;171:1619–1625. doi: 10.1016/j.surg.2021.10.012.
    1. Backes Y., van der Sluijs K.F., Mackie D.P., Tacke F., Koch A., Tenhunen J.J., Schultz M.J. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: A systematic review. Intensive Care Med. 2012;38:1418–1428. doi: 10.1007/s00134-012-2613-1.
    1. Zou Q., Wen W., Zhang X.C. Presepsin as a novel sepsis biomarker. World J. Emerg. Med. 2014;5:16–19. doi: 10.5847/wjem.j.issn.1920-8642.2014.01.002.
    1. Lee S., Song J., Park D.W., Seok H., Ahn S., Kim J., Park J., Cho H.J., Moon S. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect. Dis. 2022;22:8. doi: 10.1186/s12879-021-07012-8.
    1. Handke J., Scholz A.S., Gillmann H.J., Janssen H., Dehne S., Arens C., Kummer L., Uhle F., Weigand M.A., Motsch J., et al. Elevated Presepsin Is Associated With Perioperative Major Adverse Cardiovascular and Cerebrovascular Complications in Elevated-Risk Patients Undergoing Noncardiac Surgery: The Leukocytes and Cardiovascular Perioperative Events Study. Anesth Analg. 2019;128:1344–1353. doi: 10.1213/ANE.0000000000003738.
    1. Clementi A., Virzì G.M., Muciño-Bermejo M.J., Nalesso F., Giavarina D., Carta M., Brocca A., de Cal M., Hinna Danesi T., Zanella M., et al. Presepsin and Procalcitonin Levels as Markers of Adverse Postoperative Complications and Mortality in Cardiac Surgery Patients. Blood Purif. 2019;47:140–148. doi: 10.1159/000494207.
    1. Eggimann P., Que Y.-A., Rebeaud F. Measurement of pancreatic stone protein in the identification and management of sepsis. Biomark. Med. 2019;13:135–145. doi: 10.2217/bmm-2018-0194.
    1. Reding T., Palmiere C., Pazhepurackel C., Schiesser M., Bimmler D., Schlegel A., Süss U., Steiner S., Mancina L., Seleznik G., et al. The pancreas responds to remote damage and systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII. Oncotarget. 2017;8:30162–30174. doi: 10.18632/oncotarget.16282.
    1. Prazak J., Irincheeva I., Llewelyn M.J., Stolz D., García de Guadiana Romualdo L., Graf R., Reding T., Klein H.J., Eggimann P., Que Y.A. Accuracy of pancreatic stone protein for the diagnosis of infection in hospitalized adults: A systematic review and individual patient level meta-analysis. Crit. Care. 2021;25:182. doi: 10.1186/s13054-021-03609-2.
    1. Pugin J., Daix T., Pagani J.L., Morri D., Giacomucci A., Dequin P.F., Guitton C., Que Y.A., Zani G., Brealey D., et al. Serial measurement of pancreatic stone protein for the early detection of sepsis in intensive care unit patients: A prospective multicentric study. Crit. Care. 2021;25:151. doi: 10.1186/s13054-021-03576-8.
    1. Lopes D., Chumbinho B., Bandovas J.P., Faria P., Espírito Santo C., Ferreira B., Val-Flores L., Pereira R., Germano N., Bento L. Pancreatic stone protein as a biomarker of sepsis. Crit. Care. 2022;26:100. doi: 10.1186/s13054-022-03953-x.
    1. Ye P., Duan W., Leng Y.-Q., Wang Y.-K., Tan X., Wang W.-Z. DPP3: From biomarker to therapeutic target of cardiovascular diseases. Front. Cardiovasc. Med. 2022;9:974035. doi: 10.3389/fcvm.2022.974035.
    1. Blet A., Deniau B., Santos K., van Lier D.P.T., Azibani F., Wittebole X., Chousterman B.G., Gayat E., Hartmann O., Struck J., et al. AdrenOSS-1 Study Investigators. Monitoring circulating dipeptidyl peptidase 3 (DPP3) predicts improvement of organ failure and survival in sepsis: A prospective observational multinational study. Crit. Care. 2021;25:61. doi: 10.1186/s13054-021-03471-2.
    1. Takagi K., Blet A., Levy B., Deniau B., Azibani F., Feliot E., Bergmann A., Santos K., Hartmann O., Gayat E., et al. Circulating dipeptidyl peptidase 3 and alteration in haemodynamics in cardiogenic shock: Results from the OptimaCC trial. Eur. J. Heart Fail. 2020;22:279–286. doi: 10.1002/ejhf.1600.
    1. Deniau B., Rehfeld L., Santos K., Dienelt A., Azibani F., Sadoune M., Kounde P.R., Samuel J.L., Tolpannen H., Lassus J., et al. Circulating dipeptidyl peptidase 3 is a myocardial depressant factor: Dipeptidyl peptidase 3 inhibition rapidly and sustainably improves haemodynamics. Eur. J. Heart Fail. 2020;22:290–299. doi: 10.1002/ejhf.1601.
    1. Magliocca A., Omland T., Latini R. Dipeptidyl peptidase 3, a biomarker in cardiogenic shock and hopefully much more. Eur. J. Heart Fail. 2002;22:300–302. doi: 10.1002/ejhf.1649.
    1. Pierrakos C., Velissaris D., Bisdorff M., Marshall J.C., Vincent J.-L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care. 2020;24:287. doi: 10.1186/s13054-020-02993-5.
    1. Vincent J.L., Bogossian E., Menozzi M. The Future of Biomarkers. Crit. Care Clin. 2020;36:177–187. doi: 10.1016/j.ccc.2019.08.014.
    1. Rhee A.J., Kahn R.A. Laboratory point-of-care monitoring in the operating room. Curr. Opin. Anaesthesiol. 2010;23:741–748. doi: 10.1097/ACO.0b013e32834015bd.
    1. Piorino F., Patterson A.T., Styczynski M.P. Low-cost, point-of-care biomarker quantification. Curr. Opin. Biotechnol. 2022;76:102738. doi: 10.1016/j.copbio.2022.102738.12151217.
    1. Průcha M., Zazula R., Russwurm S. Sepsis Diagnostics in the Era of “Omics” Technologies. Prague Med. Rep. 2018;119:9–29. doi: 10.14712/23362936.2018.2.
    1. Hernandez-Beeftink T., Guillen-Guio B., Lorenzo-Salazar J.M., Corrales A., Suarez-Pajes E., Feng R., Rubio-Rodríguez L.A., Paynton M.L., Cruz R., García-Laorden M.I., et al. Genetics of Sepsis (GEN-SEP) Network. A genome-wide association study of survival in patients with sepsis. Crit. Care. 2022;26:341. doi: 10.1186/s13054-022-04208-5.
    1. Neudecker V., Brodsky K.S., Kreth S., Ginde A.A., Eltzschig H.K. Emerging Roles for MicroRNAs in Perioperative Medicine. Anesthesiology. 2016;124:489–506. doi: 10.1097/ALN.0000000000000969.
    1. Halvorsen S., Mehilli J., Cassese S., Hall T.S., Abdelhamid M., Barbato E., De Hert S., de Laval I., Geisler T., Hinterbuchner L., et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022;43:3826–3924. doi: 10.1093/eurheartj/ehac270.
    1. Fleisher L.A., Fleischmann K.E., Auerbach A.D., Barnason S.A., Beckman J.A., Bozkurt B., Davila-Roman V.G., Gerhard-Herman M.D., Holly T.A., Kane G.C., et al. American College of Cardiology; American Heart Association. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J. Am. Coll Cardiol. 2014;64:e77–e137. doi: 10.1016/j.jacc.2014.07.944.
    1. Golubović M., Janković R., Sokolović D., Ćosić V., Maravić-Stojkovic V., Kostić T., Perišić Z., Lađević N. Preoperative Midregional Pro-Adrenomedullin and High-Sensitivity Troponin T Predict Perioperative Cardiovascular Events in Noncardiac Surgery. Med. Princ Pract. 2018;27:278–284. doi: 10.1159/000488197.
    1. Montrucchio G., Balzani E., Lombardo D., Giaccone A., Vaninetti A., D’Antonio G., Rumbolo F., Mengozzi G., Brazzi L. Proadrenomedullin in the Management of COVID-19 Critically Ill Patients in Intensive Care Unit: A Systematic Review and Meta-Analysis of Evidence and Uncertainties in Existing Literature. J. Clin. Med. 2022;11:4543. doi: 10.3390/jcm11154543.
    1. Vigué B., Leblanc P.E., Moati F., Pussard E., Foufa H., Rodrigues A., Figueiredo S., Harrois A., Mazoit J.X., Rafi H., et al. Mid-regional pro-adrenomedullin (MR-proADM), a marker of positive fluid balance in critically ill patients: Results of the ENVOL study. Crit. Care. 2016;20:363. doi: 10.1186/s13054-016-1540-x.
    1. Barichello T., Generoso J.S., Singer M., Dal-Pizzol F. Biomarkers for sepsis: More than just fever and leukocytosis—A narrative review. Crit. Care. 2022;26:14. doi: 10.1186/s13054-021-03862-5.
    1. van Lier D., Deniau B., Santos K., Hartmann O., Dudoignon E., Depret F., Plaud B., Laterre P.F., Mebazaa A., Pickkers P. Circulating dipeptidyl peptidase 3 and bio-adrenomedullin levels are associated with impaired outcomes in critically ill COVID-19 patients: A prospective international multicentre study. ERJ Open Res. 2023;9:00342–02022. doi: 10.1183/23120541.00342-2022.
    1. Torres A., Artigas A., Ferrer R. Biomarkers in the ICU: Less is more? No. Intensive Care Med. 2021;47:97–100. doi: 10.1007/s00134-020-06271-4.
    1. Stoppe C., Wendt S., Mehta N.M., Compher C., Preiser J.C., Heyland D.K., Kristof A.S. Biomarkers in critical care nutrition. Crit. Care. 2020;24:499. doi: 10.1186/s13054-020-03208-7.
    1. Mjertan A., Méndez Hernández R., Hernández-Aceituno A., Ramasco Rueda F., Planas Roca A., Santa Cruz Hernando A. Preoperative nutritional status assessed using the CONUT tool and its relationship with the appearance of major postoperative complications. Rev. Esp. Anestesiol. Reanim. (Engl. Ed.) 2022;69:345–350. doi: 10.1016/j.redar.2021.05.021.
    1. Póvoa P., Coelho L., Dal-Pizzol F., Ferrer R., Huttner A., Conway Morris A., Nobre V., Ramirez P., Rouze A., Salluh J., et al. How to use biomarkers of infection or sepsis at the bedside: Guide to clinicians. Intensive Care Med. 2023 doi: 10.1007/s00134-022-06956-y. ahead of print.
    1. Seymour C.W., Gomez H., Chang C.H., Clermont G., Kellum J.A., Kennedy J., Yende S., Angus D.C. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit. Care. 2017;21:257. doi: 10.1186/s13054-017-1836-5.

Source: PubMed

3
Abonnieren