Effect of Electro-Acupuncture and Moxibustion on Brain Connectivity in Patients with Crohn's Disease: A Resting-State fMRI Study

Chunhui Bao, Di Wang, Peng Liu, Yin Shi, Xiaoming Jin, Luyi Wu, Xiaoqing Zeng, Jianye Zhang, Huirong Liu, Huangan Wu, Chunhui Bao, Di Wang, Peng Liu, Yin Shi, Xiaoming Jin, Luyi Wu, Xiaoqing Zeng, Jianye Zhang, Huirong Liu, Huangan Wu

Abstract

Acupuncture and moxibustion have been shown to be effective in treating Crohn's disease (CD), but their therapeutic mechanisms remain unclear. Here we compared brain responses to either electro-acupuncture or moxibustion treatment in CD patients experiencing remission. A total of 65 patients were randomly divided into an electro-acupuncture group (n = 32) or a moxibustion group (n = 33), and treated for 12 weeks. Eighteen patients in the electro-acupuncture group and 20 patients in the moxibustion group underwent resting-state functional magnetic resonance imaging at baseline and after treatment. Seed-based analysis was used to compare the resting-state functional connectivity (rsFC) between bilateral hippocampus and other brain regions before and after the treatments, as well as between the two groups. The CD activity index (CDAI) and inflammatory bowel disease questionnaire (IBDQ) were used to evaluate disease severity and patient quality of life. Electro-acupuncture and moxibustion both significantly reduced CDAI values and increased IBDQ scores. In the electro-acupuncture group, the rsFC values between bilateral hippocampus and anterior middle cingulate cortex (MCC) and insula were significantly increased, and the changes were negatively correlated with the CDAI scores. In the moxibustion group, the rsFC values between bilateral hippocampus and precuneus as well as inferior parietal lobe (IPC) were significantly elevated, and the changes were negatively correlated with the CDAI scores. We conclude that the therapeutic effects of electro-acupuncture and moxibustion on CD may involve the differently modulating brain homeostatic afferent processing network and default mode network (DMN), respectively.

Keywords: Crohn’s disease; acupuncture; fMRI; functional connectivity; moxibustion.

Figures

Figure 1
Figure 1
Locations of selected acupoints and schematic diagram of electro-acupuncture and moxibustion treatment. The acupoints were ST25 (stomach, Tianshu, bilateral), CV6 (conception vessel, Qihai) and CV12 (Zhongwan).
Figure 2
Figure 2
Left hippocampal seed locations and brain responses to electro-acupuncture and moxibustion treatment. (A) Seed region in the left hippocampus. (B) Brain regions showing an increase of rsFC with the left hippocampus following moxibustion compared to electro-acupuncture treatment, and the correlation between rsFC and CDAI scores. (C) Brain regions showing less of an increase of rsFC with the left hippocampus after electro-acupuncture compared to moxibustion treatment, and the correlation between rsFC and CDAI score changes. CDAI, Crohn’s disease activity index; HIPP, hippocampus; IPC, inferior parietal cortex; MCC, middle cingulate cortex; PCUN, precuneus; rsFC, resting-state functional connectivity.
Figure 3
Figure 3
Right hippocampal seed locations and brain responses to electro-acupuncture and moxibustion treatment. (A) Seed region in the right hippocampus. (B) Brain regions showing an increase of rsFC with the right hippocampus following moxibustion compared to electro-acupuncture treatment, and the correlation between rsFC and CDAI scores. (C) Brain regions showing less of an increase of rsFC with the right hippocampus after electro-acupuncture compared to moxibustion treatment, and the correlation between rsFC and CDAI score changes. CDAI, Crohn’s disease activity index; HIPP, hippocampus; IPC, inferior parietal cortex; MCC, middle cingulate cortex; PCUN, precuneus; rsFC, resting-state functional connectivity.

References

    1. Al Omran Y., Aziz Q. (2014). The brain-gut axis in health and disease. Adv. Exp. Med. Biol. 817, 135–153. 10.1007/978-1-4939-0897-4_6
    1. Bao C., Liu P., Liu H., Jin X., Calhoun V. D., Wu L., et al. . (2016). Different brain responses to electro-acupuncture and moxibustion treatment in patients with Crohn’s disease. Sci. Rep. 6:36636. 10.1038/srep36636
    1. Bao C. H., Liu P., Liu H. R., Wu L. Y., Jin X. M., Wang S. Y., et al. . (2016). Differences in regional homogeneity between patients with Crohn’s disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging. Pain 157, 1037–1044. 10.1097/j.pain.0000000000000479
    1. Bao C. H., Liu P., Liu H. R., Wu L. Y., Shi Y., Chen W. F., et al. . (2015). Alterations in brain grey matter structures in patients with Crohn’s disease and their correlation with psychological distress*. J. Crohns Colitis 2015, 532–540. 10.1093/ecco-jcc/jjv057
    1. Bao C. H., Zhao J. M., Liu H. R., Lu Y., Zhu Y. F., Shi Y., et al. . (2014). Randomized controlled trial: moxibustion and acupuncture for the treatment of Crohn’s disease. World J. Gastroenterol. 20, 11000–11011. 10.3748/wjg.v20.i31.11000
    1. Best W. R., Becktel J. M., Singleton J. W. (1979). Rederived values of the eight coefficients of the Crohn’s disease activity index (CDAI). Gastroenterology 77, 843–846.
    1. Binder J. R., Desai R. H., Graves W. W., Conant L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796. 10.1093/cercor/bhp055
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541. 10.1002/mrm.1910340409
    1. Blankstein U., Chen J., Diamant N. E., Davis K. D. (2010). Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology 138, 1783–1789. 10.1053/j.gastro.2009.12.043
    1. Bonaz B. L., Bernstein C. N. (2013). Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144, 36–49. 10.1053/j.gastro.2012.10.003
    1. Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Ann. N Y Acad. Sci. 1124, 1–38. 10.1196/annals.1440.011
    1. Bullmore E., Sporns O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198. 10.1038/nrn2575
    1. Cheifetz A. S., Gianotti R., Luber R., Gibson P. R. (2017). Complementary and alternative medicines used by patients with inflammatory bowel diseases. Gastroenterology 152, 415.e15–429.e15. 10.1053/j.gastro.2016.10.004
    1. Chen X., Spaeth R. B., Freeman S. G., Scarborough D. M., Hashmi J. A., Wey H. Y., et al. . (2015). The modulation effect of longitudinal acupuncture on resting state functional connectivity in knee osteoarthritis patients. Mol. Pain 11:67. 10.1186/s12990-015-0071-9
    1. Clark M., Colombel J. F., Feagan J. F., Fedorak B. C., Hanauer K. N., Kamm S. B., et al. . (2007). American gastroenterological association consensus development conference on the use of biologics in the treatment of inflammatory bowel disease, June 21–23, 2006. Gastroenterology 133, 312–339. 10.1053/j.gastro.2007.05.006
    1. Deng D., Liao H., Duan G., Liu Y., He Q., Liu H., et al. . (2016). Modulation of the default mode network in first-episode, drug-Naïve major depressive disorder via acupuncture at baihui (GV20) acupoint. Front. Hum. Neurosci. 10:230. 10.3389/fnhum.2016.00230
    1. Duan G., Liu H., Pang Y., Liu P., Liu Y., Wang G., et al. . (2017). Hippocampal fractional amplitude of low-frequency fluctuation and functional connectivity changes in premenstrual syndrome. J. Magn. Reson. Imaging [Epub ahead of print]. 10.1002/jmri.25775
    1. Fox M. D., Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711. 10.1038/nrn2201
    1. Graybiel A. M. (2008). Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387. 10.1146/annurev.neuro.29.051605.112851
    1. Han J. S. (2009). Neuroscience. China: Peking University Medical Press.
    1. Han J. S. (2016). Research on acupuncture anesthesia-analgesia. Zhen Ci Yan Jiu 41, 377–387. 10.13702/j.1000-0607.2016.05.001
    1. Han J. S., Xie G. X., Zhou Z. F., Folkesson R., Terenius L. (1982). Enkephalin and β-endorphin as mediators of electro-acupuncture analgesia in rabbits: an antiserum microinjection study. Adv. Biochem. Psychopharmacol. 33, 369–377.
    1. Heydarpour P., Rahimian R., Fakhfouri G., Khoshkish S., Fakhraei N., Salehi-Sadaghiani M., et al. . (2016). Behavioral despair associated with a mouse model of Crohn’s disease: role of nitric oxide pathway. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 131–141. 10.1016/j.pnpbp.2015.08.004
    1. Huang R., Zhao J., Wu L., Dou C., Liu H., Weng Z., et al. . (2014). Mechanisms underlying the analgesic effect of moxibustion on visceral pain in irritable bowel syndrome: a review. Evid. Based Complement. Alternat. Med. 2014:895914. 10.1155/2014/895914
    1. Hui K. K., Liu J. O., Napadow V., Haselgrove C., Kwong K. K., Kennedy D. N., et al. . (2005). The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage 27, 479–496. 10.1016/j.neuroimage.2005.04.037
    1. Irvine E. J., Feagan B., Rochon J., Archambault A., Fedorak R. N., Groll A., et al. . (1994). Quality of life: a valid and reliable measure of therapeutic efficacy in the treatment of inflammatory bowel disease. Canadian Crohn’s Relapse Prevention Trial Study Group. Gastroenterology 106, 287–296. 10.1016/0016-5085(94)90585-1
    1. Joos S., Brinkhaus B., Maluche C., Maupai N., Kohnen R., Kraehmer N., et al. . (2004). Acupuncture and moxibustion in the treatment of active Crohn’s disease: a randomized controlled study. Digestion 69, 131–139. 10.1159/000078151
    1. Lathe R. (2001). Hormones and the hippocampus. J. Endocrinol. 169, 205–231. 10.1677/joe.0.1690205
    1. Liu H., Wang L., Geng Z., Zhu Q., Song Z., Chang R., et al. . (2016). A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain. Neuropsychiatr. Dis. Treat. 12, 453–465. 10.2147/ndt.s90674
    1. Maddock R. J. (1999). The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci. 22, 310–316. 10.1016/s0166-2236(98)01374-5
    1. Mantini D., Vanduffel W. (2013). Emerging roles of the brain’s default network. Neuroscientist 19, 76–87. 10.1177/1073858412446202
    1. Mary J. Y., Modigliani R. (1989). Development and validation of an endoscopic index of the severity for Crohn’s disease: a prospective multicentre study. Groupe d’Etudes Thérapeutiques des Affections Inflammatoires du Tube Digestif (GETAID). Gut 30, 983–989. 10.1136/gut.30.7.983
    1. Mayer E. A., Naliboff B. D., Craig A. D. (2006). Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 131, 1925–1942. 10.1053/j.gastro.2006.10.026
    1. Montembeault M., Joubert S., Doyon J., Carrier J., Gagnon J. F., Monchi O., et al. . (2012). The impact of aging on gray matter structural covariance networks. Neuroimage 63, 754–759. 10.1016/j.neuroimage.2012.06.052
    1. Ning Y., Li K., Fu C., Ren Y., Zhang Y., Liu H., et al. . (2017). Enhanced functional connectivity between the bilateral primary motor cortices after acupuncture at yanglingquan (GB34) in right-hemispheric subcortical stroke patients: a resting-state fmri study. Front. Hum. Neurosci. 11:178. 10.3389/fnhum.2017.00178
    1. Pach D., Brinkhaus B., Willich S. N. (2009). Moxa sticks: thermal properties and possible implications for clinical trials. Complement. Ther. Med. 17, 243–246. 10.1016/j.ctim.2009.01.002
    1. Rasetti R., Mattay V. S., White M. G., Sambataro F., Podell J. E., Zoltick B., et al. . (2014). Altered hippocampal-parahippocampal function during stimulus encoding: a potential indicator of genetic liability for schizophrenia. JAMA Psychiatry 71, 236–247. 10.1001/jamapsychiatry.2013.3911
    1. Riazi K., Galic M. A., Kentner A. C., Reid A. Y., Sharkey K. A., Pittman Q. J. (2015). Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J. Neurosci. 35, 4942–4952. 10.1523/JNEUROSCI.4485-14.2015
    1. Riazi K., Galic M. A., Kuzmiski J. B., Ho W., Sharkey K. A., Pittman Q. J. (2008). Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. U S A 105, 17151–17156. 10.1073/pnas.0806682105
    1. Rubio A., Pellissier S., Van Oudenhove L., Ly H. G., Dupont P., Tack J., et al. . (2016). Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn’s disease—a fMRI study. Neurogastroenterol. Motil. 28, 1419–1432. 10.1111/nmo.12844
    1. Saibeni S., Meucci G., Papi C., Manes G., Fascì-Spurio F. (2014). Low bioavailability steroids in inflammatory bowel disease: an old chestnut or a whole new ballgame? Expert Rev. Gastroenterol. Hepatol. 8, 949–962. 10.1586/17474124.2014.924396
    1. Schneider F., Bermpohl F., Heinzel A., Rotte M., Walter M., Tempelmann C., et al. . (2008). The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline structures. Neuroscience 157, 120–131. 10.1016/j.neuroscience.2008.08.014
    1. Schneider A., Streitberger K., Joos S. (2007). Acupuncture treatment in gastrointestinal diseases: a systematic review. World J. Gastroenterol. 13, 3417–3424. 10.3748/wjg.v13.i25.3417
    1. Takahashi T. (2011). Mechanism of acupuncture on neuromodulation in the gut—a review. Neuromodulation 14, 8–12. 10.1111/j.1525-1403.2010.00295.x
    1. Thomann A. K., Thomann P. A., Wolf R. C., Hirjak D., Schmahl C., Ebert M. P., et al. . (2016). Altered markers of brain development in Crohn’s disease with extraintestinal manifestations—a pilot study. PLoS One 11:e0163202. 10.1371/journal.pone.0163202
    1. Torres J., Mehandru S., Colombel J. -F., Peyrin-Biroulet L. (2016). Crohn’s disease. Lancet 389, 1741–1755. 10.1016/S0140-6736(16)31711-1
    1. Van Oudenhove L., Coen S. J., Aziz Q. (2007). Functional brain imaging of gastrointestinal sensation in health and disease. World J. Gastroenterol. 13, 3438–3445. 10.3748/wjg.v13.i25.3438
    1. Wang X., Wang Z., Liu J., Chen J., Liu X., Nie G., et al. . (2016). Repeated acupuncture treatments modulate amygdala resting state functional connectivity of depressive patients. Neuroimage Clin. 12, 746–752. 10.1016/j.nicl.2016.07.011
    1. Whitfield-Gabrieli S., Nieto-Castanon A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141. 10.1089/brain.2012.0073
    1. Wiech K., Ploner M., Tracey I. (2008). Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313. 10.1016/j.tics.2008.05.005
    1. Wu M., Kumar A., Yang S. (2016). Development and aging of superficial white matter myelin from young adulthood to old age: mapping by vertex-based surface statistics (VBSS). Hum. Brain Mapp. 37, 1759–1769. 10.1002/hbm.23134
    1. Yi S. H. (2009). Thermal properties of direct and indirect moxibustion. J. Acupunct. Meridian Stud. 2, 273–279. 10.1016/S2005-2901(09)60068-6
    1. Zeng F., Qin W., Ma T., Sun J., Tang Y., Yuan K., et al. . (2012). Influence of acupuncture treatment on cerebral activity in functional dyspepsia patients and its relationship with efficacy. Am. J. Gastroenterol. 107, 1236–1247. 10.1038/ajg.2012.53
    1. Zonis S., Pechnick R. N., Ljubimov V. A., Mahgerefteh M., Wawrowsky K., Michelsen K. S., et al. . (2015). Chronic intestinal inflammation alters hippocampal neurogenesis. J. Neuroinflammation 12:65. 10.1186/s12974-015-0281-0

Source: PubMed

3
Abonnieren