Correlation between Language Development and Motor Skills, Physical Activity, and Leisure Time Behaviour in Preschool-Aged Children

Daniela Mulé, Ilka Jeger, Jörg Dötsch, Florian Breido, Nina Ferrari, Christine Joisten, Daniela Mulé, Ilka Jeger, Jörg Dötsch, Florian Breido, Nina Ferrari, Christine Joisten

Abstract

Sedentary behaviour has a negative impact on children’s physical and mental health. However, limited data are available on language development. Therefore, this pilot study aimed to analyse the associations between language development and possible predictors such as motor skills and leisure time behaviour in preschool-aged children. Methods: In this cross-sectional analysis, motor skills and speech development status were assessed in 49 healthy preschool children. Physical activity and screen time were assessed via a parental questionnaire. Results: On average, physical activity was 8.2 ± 6.5 h/week; mean screen time was 154.2 ± 136.2 min/week. A positive relationship between the results in the item ‘One-leg stand’ and ‘Phonological working memory for nonwords’ (β-coefficient −0.513; p < 0.001) resp. ‘Formation of morphological rules’ (β-coefficient −0.626; p = 0.004) was shown within backward stepwise regression. ‘Lateral jumping’, resp. ‘Sit and Reach’ were positively associated with ‘Understanding sentences’ (β-coefficient 0.519; p = 0.001 resp. β-coefficient 0.735; p = 0.002). ‘Physical inactivity’ correlated negatively with all language development subtests (each p < 0.05). Media consumption had a negative predictive effect on the subdomain ‘Understanding Sentences’ (β-coefficient −0.530, p = 0.003). Conclusions: An inactive lifestyle correlated negatively with selected subtests of language development in early childhood. These results should be verified in larger groups and longitudinally but support the need for early health promotion.

Keywords: KiMo-Test; SETK 3–5; inactivity; media consumption; motor skills; overweight.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Selection of study participants.
Figure 2
Figure 2
Test setup ‘Shuttle Run’, ©Testmanual KiMo-Test; Dr. rer. nat. S. Dordel, Dr. sports scient. B. Koch, Dipl.-sports scient. D. Klein; Institute of Movement and Neurosciences German Sport University Cologne, Germany.
Figure 3
Figure 3
Test setup ‘Standing long jump’, ©Testmanual KiMo-Test; Dr. rer. nat. S. Dordel, Dr. sports scient. B. Koch, Dipl.-sports scient. D. Klein; Institute of Movement and Neurosciences German Sport University Cologne, Germany.
Figure 4
Figure 4
Test setup ‘One-leg stand’, ©Testmanual KiMo-Test; Dr. rer. Nat. S. Dordel, Dr. sports scient. B. Koch, Dipl.-sports scient. D. Klein; Institute of Movement and Neurosciences German Sport University Cologne, Germany.
Figure 5
Figure 5
Test setup ‘Sit-and-reach’, ©Testmanual KiMo-Test; Dr. rer. nat. S. Dordel, Dr. sports scient. B. Koch, Dipl.-sports scient. D. Klein; Institute of Movement and Neurosciences German Sport University Cologne, Germany.
Figure 6
Figure 6
Test setup ‘Lateral jumping’, ©Testmanual KiMo-Test; Dr. rer. nat. S. Dordel, Dr. sports scient. B. Koch, Dipl.-sports scient. D. Klein; Institute of Movement and Neurosciences German Sport University Cologne, Germany.

References

    1. Carson V., Janssen I. Associations between factors within the home setting and screen time among children aged 0–5 years: A cross-sectional study. BMC Public Health. 2012;12:539. doi: 10.1186/1471-2458-12-539.
    1. Finger J.D., Mensink G.B.M., Banzer W., Lampert T., Tylleskär T. Physical activity, aerobic fitness and parental socio-economic position among adolescents: The German Health Interview and Examination Survey for Children and Adolescents 2003–2006 (KiGGS) Int. J. Behav. Nutr. Phys. Act. 2014;11:43. doi: 10.1186/1479-5868-11-43.
    1. Graf C., Ferrari N., Beneke R., Bloch W., Eiser S., Koch B., Lawrenz W., Krug S., Manz K., Oberhoffer R., et al. Recommendations for Physical Activity and Sedentary Behaviour for Children and Adolescents: Methods, Database and Rationale. Gesundheitswesen. German. 2017;79:S11–S19.
    1. Jordan A.B., Hersey J.C., McDivitt J.A., Heitzler C.D. Reducing children’s television-viewing time: A qualitative study of parents and their children. Pediatrics. 2006;118:e1303–e1310. doi: 10.1542/peds.2006-0732.
    1. Lee S.-J., Bartolic S., Vandewater E.A. Predicting children’s media use in the USA: Differences in cross-sectional and longitudinal analysis. Br. J. Dev. Psychol. 2009;27:123–143. doi: 10.1348/026151008X401336.
    1. Reilly J.J., Jackson D.M., Montgomery C., Kelly L.A., Slater C., Grant S., Paton J.Y. Total energy expenditure and physical activity in young Scottish children: Mixed longitudinal study. Lancet. 2004;363:211–212. doi: 10.1016/S0140-6736(03)15331-7.
    1. Schienkiewitz A., Damerow S., Schaffrath Rosario A., Kurth B.-M. Body mass index among children and adolescents: Prevalences and distribution considering underweight and extreme obesity: Results of KiGGS Wave 2 and trends. Bundesgesundheitsblatt Gesundh. Gesundh. 2019;62:1225–1234. doi: 10.1007/s00103-019-03015-8.
    1. World Health Organization . Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age. World Health Organization; Geneva, Switzerland: 2019.
    1. Finger J.D., Varnaccia G., Borrmann A., Lange C., Mensink G. Körperliche Aktivität von Kindern und Jugendlichen in Deutschland–Querschnittergebnisse aus KiGGS Welle 2 und Trends. J. Health Monit. 2018;3:S24–S31.
    1. Robert Koch-Institut . Körperliche Aktivität von Kindern und Jugendlichen in Deutschland—Querschnittergebnisse aus KiGGS Welle 2 und Trends: RKI-Bib1. Robert Koch-Institut; Berlin, Germany: 2018.
    1. Pfeifer K., Rütten A. National Recommendations for Physical Activity and Physical Activity Promotion. Gesundheitswesen. 2017;79:S2–S3.
    1. Manz K., Schlack R., Poethko-Müller C., Mensink G., Finger J., Lampert T. Physical activity and electronic media use in children and adolescents: Results of the KiGGS study: First follow-up (KiGGS wave 1) Bundesgesundheitsblatt Gesundh. Gesundh. 2014;57:840–848. doi: 10.1007/s00103-014-1986-4.
    1. Webster E.K., Martin C.K., Staiano A.E. Fundamental motor skills, screen-time, and physical activity in preschoolers. J. Sport Health Sci. 2019;8:114–121. doi: 10.1016/j.jshs.2018.11.006.
    1. Greier K., Drenowatz C., Ruedl G., Riechelmann H. Association between daily TV time and physical fitness in 6- to 14-year-old Austrian youth. Transl. Pediatr. 2019;8:371–377. doi: 10.21037/tp.2019.03.03.
    1. Lin L.-Y., Cherng R.-J., Chen Y.-J., Chen Y.-J., Yang H.-M. Effects of television exposure on developmental skills among young children. Infant Behav. Dev. 2015;38:20–26. doi: 10.1016/j.infbeh.2014.12.005.
    1. Janz K.F., Boros P., Letuchy E.M., Kwon S., Burns T.L., Levy S.M. Physical Activity, Not Sedentary Time, Predicts Dual-Energy X-ray Absorptiometry-measured Adiposity Age 5 to 19 Years. Med. Sci. Sports Exerc. 2017;49:2071–2077. doi: 10.1249/MSS.0000000000001336.
    1. Stiglic N., Viner R.M. Effects of screentime on the health and well-being of children and adolescents: A systematic review of reviews. BMJ Open. 2019;9:e023191. doi: 10.1136/bmjopen-2018-023191.
    1. Smith J.J., Eather N., Morgan P.J., Plotnikoff R.C., Faigenbaum A.D., Lubans D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014;44:1209–1223. doi: 10.1007/s40279-014-0196-4.
    1. Reiner M., Niermann C., Jekauc D., Woll A. Long-term health benefits of physical activity–a systematic review of longitudinal studies. BMC Public Health. 2013;13:813. doi: 10.1186/1471-2458-13-813.
    1. Janssen I., Leblanc A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010;7:40. doi: 10.1186/1479-5868-7-40.
    1. Davies P.S., Gregory J., White A. Physical activity and body fatness in pre-school children. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1995;19:6–10.
    1. Meredith-Jones K., Haszard J., Moir C., Heath A.-L., Lawrence J., Galland B., Taylor B., Gray A., Sayers R., Taylor R. Physical activity and inactivity trajectories associated with body composition in pre-schoolers. Int. J. Obes. 2018;42:1621–1630. doi: 10.1038/s41366-018-0058-5.
    1. Butte N.F., Puyau M.R., Wilson T.A., Liu Y., Wong W.W., Adolph A.L., Zakeri I.F. Role of physical activity and sleep duration in growth and body composition of preschool-aged children. Obesity (Silver Spring) 2016;24:1328–1335. doi: 10.1002/oby.21489.
    1. Kwon S., Janz K.F., Letuchy E.M., Burns T.L., Levy S.M. Active lifestyle in childhood and adolescence prevents obesity development in young adulthood. Obesity (Silver Spring) 2015;23:2462–2469. doi: 10.1002/oby.21262.
    1. White R.L., Babic M.J., Parker P.D., Lubans D.R., Astell-Burt T., Lonsdale C. Domain-Specific Physical Activity and Mental Health: A Meta-analysis. Am. J. Prev. Med. 2017;52:653–666. doi: 10.1016/j.amepre.2016.12.008.
    1. Chaddock L., Hillman C.H., Buck S.M., Cohen N.J. Aerobic fitness and executive control of relational memory in preadolescent children. Med. Sci. Sports Exerc. 2011;43:344–349. doi: 10.1249/MSS.0b013e3181e9af48.
    1. Scudder M.R., Lambourne K., Drollette E.S., Herrmann S.D., Washburn R.A., Donnelly J.E., Hillman C.H. Aerobic capacity and cognitive control in elementary school-age children. Med. Sci. Sports Exerc. 2014;46:1025–1035. doi: 10.1249/MSS.0000000000000199.
    1. Donnelly J.E., Hillman C.H., Castelli D., Etnier J.L., Lee S., Tomporowski P., Lambourne K., Szabo-Reed A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Med. Sci. Sports Exerc. 2016;48:1197–1222. doi: 10.1249/MSS.0000000000000901.
    1. Bidzan-Bluma I., Lipowska M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health. 2018;15:800. doi: 10.3390/ijerph15040800.
    1. Tandon P.S., Tovar A., Jayasuriya A.T., Welker E., Schober D.J., Copeland K., Dev D.A., Murriel A.L., Amso D., Ward D.S. The relationship between physical activity and diet and young children’s cognitive development: A systematic review. Prev. Med. Rep. 2016;3:379–390. doi: 10.1016/j.pmedr.2016.04.003.
    1. van der Fels I.M.J., Te Wierike S.C.M., Hartman E., Elferink-Gemser M.T., Smith J., Visscher C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport. 2015;18:697–703. doi: 10.1016/j.jsams.2014.09.007.
    1. Klein D., Koch B., Dordel S., Strüder H.K., Graf C. The KiMo test: A motor screening for pre-school children aged 3–6 years. Gazz. Med. Ital. 2012;171:13–26.
    1. Grimm H. SETK 3–5–Sprachentwicklungstest für Drei-Bis Fünfjährige Kinder. Diagnose von Sprachverarbeitungsfähigkeiten und Auditiven Gedächtnisleistungen. Manual. 2nd ed. Hogrefe-Verlag; Göttingen, Germany: 2011.
    1. Graf C., Koch B., Kretschmann-Kandel E., Falkowski G., Christ H., Coburger S., Lehmacher W., Bjarnason-Wehrens B., Platen P., Tokarski W., et al. Correlation between BMI, leisure habits and motor abilities in childhood (CHILT-project) Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2004;28:22–26. doi: 10.1038/sj.ijo.0802428.
    1. Clark J.E., Clements R.L., Guddemi M., Morgan D.W., Pica R., Pivarnik J.M., Rudisill M., Small E., Virgilio S.J. Active Start: A Statement of Physical Activity Guidelines for Children Birth to Five Years. National Association for Sport and Physical Education; Reston, VA, USA: 2002.
    1. Kromeyer-Hauschild K., Wabitsch M., Kunze D., Geller F., Geiß H.C., Hesse V., von Hippel A., Jaeger U., Johnsen D., Korte W., et al. Perzentile für den Body-mass-Index für das Kindes-und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Mon. Kinderheilkd. 2001;149:807–818. doi: 10.1007/s001120170107.
    1. Martinez-Tellez B., Sanchez-Delgado G., Cadenas-Sanchez C., Mora-Gonzalez J., Martin-Matillas M., Löf M., Ortega F.B., Ruiz J.R. Health-related physical fitness is associated with total and central body fat in preschool children aged 3 to 5 years. Pediatric Obes. 2016;11:468–474. doi: 10.1111/ijpo.12088.
    1. Carson V., Lee E.-Y., Hewitt L., Jennings C., Hunter S., Kuzik N., Stearns J.A., Unrau S.P., Poitras V.J., Gray C., et al. Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years) BMC Public Health. 2017;17:854.
    1. Carson V., Hunter S., Kuzik N., Wiebe S.A., Spence J.C., Friedman A., Tremblay M.S., Slater L., Hinkley T. Systematic review of physical activity and cognitive development in early childhood. J. Sci. Med. Sport. 2016;19:573–578. doi: 10.1016/j.jsams.2015.07.011.
    1. Graf C. Correlation between physical activities and concentration in children-results of the CHILT project. Dtsch. Z. Sportmed. 2003;54:242–246.
    1. Davis E.E., Pitchford N.J., Limback E. The interrelation between cognitive and motor development in typically developing children aged 4–11 years is underpinned by visual processing and fine manual control. Br. J. Psychol. 2011;102:569–584. doi: 10.1111/j.2044-8295.2011.02018.x.
    1. Müürsepp I., Aibast H., Gapeyeva H., Pääsuke M. Motor skills, haptic perception and social abilities in children with mild speech disorders. Brain Dev. 2012;34:128–132. doi: 10.1016/j.braindev.2011.02.002.
    1. Hartman E., Houwen S., Scherder E., Visscher C. On the relationship between motor performance and executive functioning in children with intellectual disabilities. J. Intellect. Disabil. Res. 2010;54:468–477. doi: 10.1111/j.1365-2788.2010.01284.x.
    1. Müürsepp I., Aibast H., Gapeyeva H., Pääsuke M. Sensorimotor function in preschool-aged children with expressive language disorder. Res. Dev. Disabil. 2014;35:1237–1243. doi: 10.1016/j.ridd.2014.03.007.
    1. Rechetnikov R.P., Maitra K. Motor impairments in children associated with impairments of speech or language: A meta-analytic review of research literature. Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc. 2009;63:255–263. doi: 10.5014/ajot.63.3.255.
    1. Rintala P., Loovis E.M. Measuring motor skills in Finnish children with intellectual disabilities. Percept. Mot. Ski. 2013;116:294–303. doi: 10.2466/25.10.PMS.116.1.294-303.
    1. Westendorp M., Hartman E., Houwen S., Huijgen B.C.H., Smith J., Visscher C. A longitudinal study on gross motor development in children with learning disorders. Res. Dev. Disabil. 2014;35:357–363. doi: 10.1016/j.ridd.2013.11.018.
    1. Westendorp M., Houwen S., Hartman E., Visscher C. Are gross motor skills and sports participation related in children with intellectual disabilities? Res. Dev. Disabil. 2011;32:1147–1153. doi: 10.1016/j.ridd.2011.01.009.
    1. Visscher C., Houwen S., Moolenaar B., Lyons J., Scherder E.J.A., Hartman E. Motor proficiency of 6- to 9-year-old children with speech and language problems. Dev. Med. Child Neurol. 2010;52:e254–e258. doi: 10.1111/j.1469-8749.2010.03774.x.
    1. Hohm E., Jennen-Steinmetz C., Schmidt M.H., Laucht M. Language development at ten months. Predictive of language outcome and school achievement ten years later? Eur. Child Adolesc. Psychiatry. 2007;16:149–156. doi: 10.1007/s00787-006-0567-y.
    1. Iverson J.M., Braddock B.A. Gesture and Motor Skill in Relation to Language in Children with Language Impairment. J. Speech Lang. Hear. Res. 2011;54:72–86. doi: 10.1044/1092-4388(2010/08-0197).
    1. Wang M.V., Lekhal R., Aaro L.E., Holte A., Schjolberg S. The developmental relationship between language and motor performance from 3 to 5 years of age: A prospective longitudinal population study. BMC Psychol. 2014;2:34. doi: 10.1186/s40359-014-0034-3.
    1. Anderson D.R., Subrahmanyam K. Digital Screen Media and Cognitive Development. Pediatrics. 2017;140:S57–S61. doi: 10.1542/peds.2016-1758C.
    1. Thorell L.B., Lindqvist S., Bergmann Nutley S., Bohlin G., Klingberg T. Training and transfer effects of executive functions in preschool children. Dev. Sci. 2009;12:106–113. doi: 10.1111/j.1467-7687.2008.00745.x.
    1. Madigan S., Browne D., Racine N., Mori C., Tough S. Association Between Screen Time and Children’s Performance on a Developmental Screening Test. JAMA Pediatr. 2019;173:244–250. doi: 10.1001/jamapediatrics.2018.5056.
    1. Chonchaiya W., Pruksananonda C. Television viewing associates with delayed language development. Acta Paediatr. 2008;97:977–982. doi: 10.1111/j.1651-2227.2008.00831.x.
    1. Tamana S.K., Ezeugwu V., Chikuma J., Lefebvre D.L., Azad M.B., Moraes T.J., Subbarao P., Becker A.B., Turvey S., Sears M.R., et al. Screen-time is associated with inattention problems in preschoolers: Results from the CHILD birth cohort study. PLoS ONE. 2019;14:e0213995. doi: 10.1371/journal.pone.0213995.
    1. Fang K., Mu M., Liu K., He Y. Screen time and childhood overweight/obesity: A systematic review and meta-analysis. Child Care Health Dev. 2019;45:744–753. doi: 10.1111/cch.12701.
    1. Krombholz H. Motor and cognitive performance of overweight preschool children. Percept. Mot. Ski. 2013;116:40–57. doi: 10.2466/22.25.PMS.116.1.40-57.
    1. Vazquez C.E., Cubbin C. Socioeconomic Status and Childhood Obesity: A Review of Literature from the Past Decade to Inform Intervention Research. Curr. Obes. Rep. 2020;9:562–570. doi: 10.1007/s13679-020-00400-2.
    1. Shrewsbury V., Wardle J. Socioeconomic status and adiposity in childhood: A systematic review of cross-sectional studies 1990–2005. Obesity (Silver Spring) 2008;16:275–284. doi: 10.1038/oby.2007.35.
    1. Niemistö D., Finni T., Cantell M., Korhonen E., Sääkslahti A. Individual, Family, and Environmental Correlates of Motor Competence in Young Children: Regression Model Analysis of Data Obtained from Two Motor Tests. Int. J. Environ. Res. Public Health. 2020;17:2548. doi: 10.3390/ijerph17072548.

Source: PubMed

3
Abonnieren