Association between fundamental motor skills and executive function in preschool children: A cross-sectional study

Xiaowei Han, Meiling Zhao, Zhe Kong, Jun Xie, Xiaowei Han, Meiling Zhao, Zhe Kong, Jun Xie

Abstract

Objective: The main purpose of this study was to explore the association between early fundamental motor skills (FMS) and executive function (EF) in preschool children.

Methods: A total of 394 young children (4.07 ± 0.76 years) were evaluated. The FMS and EF were evaluated using the Test of Gross Motor Development-2 (TGMD-2) and the NIH Toolbox Cognition Battery (NTCB), respectively.

Results: Total FMS score was moderately and positively correlated with total EF score (r = 0.33, p < 0.001) and was a significant predictor of total EF score (β = 0.37, p < 0.001). Specifically, locomotor skills were significant predictors of inhibition control (β = 0.21, p < 0.001), working memory (β = 0.18, p < 0.01), and cognitive flexibility (β = 0.24, p < 0.001), while object control skills were only significant predictors of inhibition control (β = 0.17, p < 0.01).

Conclusion: FMS were significantly and positively correlated with EF and were significant predictors of EF. Early childhood policymakers, preschool teachers, and researchers should take these connections seriously and implement appropriate complex motor intervention programs in future teaching to stimulate the development of both motor and higher-order cognitive skills in preschool children.

Keywords: association; executive function; fundamental motor skills; locomotor skills; preschool children.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Han, Zhao, Kong and Xie.

References

    1. Adolph K. E., Hoch J. E. (2019). Motor development: Embodied, embedded, enculturated, and enabling. Annu. Rev. Psychol. 70 141–164. 10.1146/annurev-psych-010418-102836
    1. Akshoomoff N., Newman E., Thompson W. K., McCabe C., Bloss C. S., Chang L., et al. (2014). The NIH toolbox cognition battery: Results from a large normative developmental sample (PING). Neuropsychology 28 1–10. 10.1037/neu0000001
    1. Alesi M., Bianco A., Luppina G., Palma A., Pepi A. (2016). Improving children’s coordinative skills and executive functions: The effects of a football exercise program. Percept. Mot. Skills 122 27–46. 10.1177/0031512515627527
    1. Anderson D. I., Campos J. J., Witherington D. C., Dahl A., Rivera M., He M. X., et al. (2013). The role of locomotion in psychological development. Front. Psychol. 4:440. 10.3389/fpsyg.2013.00440
    1. Anderson P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychol. 8 71–82. 10.1076/chin.8.2.71.8724
    1. Banich M. T. (2009). Executive function: The search for an integrated account. Curr. Dir. Psychol. Sci. 18 89–94. 10.1111/j.1467-8721.2009.01615.x
    1. Bauer P. J., Zelazo P. D. (2013). Ix. Nih Toolbox Cognition Battery (Cb): Summary, conclusions, and implications for cognitive development. Monogr. Soc. Res. Child Dev. 78 133–146. 10.1111/mono.12039
    1. Best J. R., Miller P. H. (2010). A developmental perspective on executive function. Child Dev. 81 1641–1660. 10.1111/j.1467-8624.2010.01499.x
    1. Blair C., Razza R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev. 78 647–663. 10.1111/j.1467-8624.2007.01019.x
    1. Cameron C. E., Brock L. L., Hatfield B. E., Cottone E. A., Rubinstein E., LoCasale-Crouch J., et al. (2015). Visuomotor integration and inhibitory control compensate for each other in school readiness. Dev. Psychol. 51 1529–1543. 10.1037/a0039740
    1. Campos J. J., Anderson D. I., Barbu-Roth M. A., Hubbard E. M., Hertenstein M. J., Witherington D. (2000). Travel broadens the mind. Infancy 1 149–219. 10.1207/S15327078in0102_1
    1. Caporaso J. S., Boseovski J. J., Marcovitch S. (2019). The individual contributions of three executive function components to preschool social competence. Infant Child Dev. 28:e2132. 10.1002/icd.2132
    1. Cavedon V., Bezodis N. E., Sandri M., Pirlo M., Zancanaro C., Milanese C. (2022). Relationships between anthropometric characteristics, block settings, and block clearance technique during the sprint start. J. Sports Sci. 40 1097–1109. 10.1080/02640414.2022.2049082
    1. Cook C. J., Howard S. J., Scerif G., Twine R., Kahn K., Norris S. A., et al. (2019). Associations of physical activity and gross motor skills with executive function in preschool children from low-income South African settings. Dev. Sci. 22:e12820. 10.1111/desc.12820
    1. Diamond A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 71 44–56. 10.1111/1467-8624.00117
    1. Diamond A. (2013). Executive functions. Annu. Rev. Psychol. 64 135–168. 10.1146/annurev-psych-113011-143750
    1. Diamond A., Lee K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science 333 959–964. 10.1126/science.1204529
    1. Feldman R. S. (2017). Development Across the Life Span. Harlow: Pearson Education.
    1. Floyer-Lea A., Matthews P. M. (2004). Changing brain networks for visuomotor control with increased movement automaticity. J. Neurophysiol. 92 2405–2412. 10.1152/jn.01092.2003
    1. Foglia L., Wilson R. A. (2013). Embodied cognition. Wiley Interdiscip. Rev. Cogn. Sci. 4 319–325. 10.1002/wcs.1226
    1. Gallahue D. L., Ozmun J. C., Goodway J. D. (2011). Understanding Motor Development: Infants, Children, Adolescents, Adults. New York, NY: McGraw-Hill.
    1. General Administration of Sport of China (2003). The Manual of Chinese National Physical Ftness Evaluation Standard-Preschool Children Version. Beijing: People’s Sports Publishing House.
    1. Houwen S., van der Veer G., Visser J., Cantell M. (2017). The relationship between motor performance and parent-rated executive functioning in 3-to 5-year-old children: What is the role of confounding variables? Hum. Mov. Sci. 53 24–36. 10.1016/j.humov.2016.12.009
    1. Huang C. C., Lu S., Rios J., Chen Y. F., Stringham M., Cheung S. (2020). Associations between mindfulness, executive function, social-emotional skills, and quality of life among hispanic children. Int. J. Environ. Res. Public Health 17:7796. 10.3390/ijerph17217796
    1. Hughes C., Ensor R. (2008). Does executive function matter for preschoolers’ problem behaviors? J. Abnorm. Child Psychol. 36 1–14. 10.1007/s10802-007-9107-6
    1. Jones R. A., Riethmuller A., Hesketh K., Trezise J., Batterham M., Okely A. D. (2011). Promoting fundamental movement skill development and physical activity in early childhood settings: A cluster randomized controlled trial. Pediatr. Exerc. Sci. 23 600–615. 10.1123/pes.23.4.600
    1. Lehmann J., Quaiser-Pohl C., Jansen P. (2014). Correlation of motor skill, mental rotation, and working memory in 3-to 6-year-old children. Eur. J. Dev. Psychol. 11 560–573. 10.1080/17405629.2014.888995
    1. Lerner R. M., Liben L. S., Mueller U. (2015). Handbook of Child Psychology and Developmental Science, Cognitive Processes. New York, NY: John Wiley &Sons.
    1. Li J., Ma H. X. (2007). Study of the credibility and validity of the test of gross motor development of children. Chin. J. Phys. Educ. 14 37–40. 10.16237/j.cnki.cn44-1404/g8.2007.03.011
    1. Lippi G., Mattiuzzi C., Sanchis-Gomar F. (2020). Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J. Sport Health Sci. 9 74–81. 10.1016/j.jshs.2019.07.012
    1. Livesey D., Keen J., Rouse J., White F. (2006). The relationship between measures of executive function, motor performance and externalising behaviour in 5-and 6-year-old children. Hum. Mov. Sci. 25 50–64. 10.1016/j.humov.2005.10.008
    1. Lubans D. R., Morgan P. J., Cliff D. P., Barnett L. M., Okely A. D. (2010). Fundamental movement skills in children and adolescents review of associated health benefits. Sports Med. 40 1019–1035. 10.2165/11536850-000000000-00000
    1. Maurer M. N., Roebers C. M. (2019). Towards a better understanding of the association between motor skills and executive functions in 5-to 6-year-olds: The impact of motor task difficulty. Hum. Mov. Sci. 66 607–620. 10.1016/j.humov.2019.06.010
    1. McClelland M. M., Cameron C. E. (2018). Developing together: The role of executive function and motor skills in children’s early academic lives. Early Child. Res. Q. 46 142–151. 10.1016/j.ecresq.2018.03.014
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 41 49–100. 10.1006/cogp.1999.0734
    1. Moffitt T. E., Arseneault L., Belsky D., Dickson N., Hancox R. J., Harrington H., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. U.S.A. 108 2693–2698. 10.1073/pnas.1010076108
    1. Morrow J. R., Tucker J. S., Jackson A. W., Martin S. B., Greenleaf C. A., Petrie T. A. (2013). Meeting physical activity guidelines and health-related fitness in youth. Am. J. Prev. Med. 44 439–444. 10.1016/j.amepre.2013.01.008
    1. Oberer N., Gashaj V., Roebers C. M. (2017). Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables. Hum. Mov. Sci. 52 170–180. 10.1016/j.humov.2017.02.002
    1. Oberer N., Gashaj V., Roebers C. M. (2018). Executive functions, visual-motor coordination, physical fitness and academic achievement: Longitudinal relations in typically developing children. Hum. Mov. Sci. 58 69–79. 10.1016/j.humov.2018.01.003
    1. Robinson L. E., Stodden D. F., Barnett L. M., Lopes V. P., Logan S. W., Rodrigues L. P., et al. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Med. 45 1273–1284. 10.1007/s40279-015-0351-6
    1. Schmidt M., Egger F., Benzing V., Jager K., Conzelmann A., Roebers C. M., et al. (2017). Disentangling the relationship between children’s motor ability, executive function and academic achievement. PLoS One 12:e0182845. 10.1371/journal.pone.0182845
    1. Stodden D. F., Goodway J. D., Langendorfer S. J., Roberton M. A., Rudisill M. E., Garcia C., et al. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 60 290–306. 10.1080/00336297.2008.10483582
    1. Tomporowski P. D., McCullick B., Pendleton D. M., Pesce C. (2015). Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 4 47–55. 10.1016/j.jshs.2014.09.003
    1. Ulrich D. A. (2000). Test of Gross Motor Development. Austin, TX: Pro-Ed.
    1. Utendale W. T., Hastings P. D. (2011). Developmental changes in the relations between inhibitory control and externalizing problems during early childhood. Infant Child Dev. 20 181–193. 10.1002/icd.691
    1. Van der Veer G., Kamphorst E., Cantell M., Minnaert A., Houwen S. (2020). Task-specific and latent relationships between motor skills and executive functions in preschool children. Front. Psychol. 11:2208. 10.3389/fpsyg.2020.02208
    1. von Hofsten C. (2007). Action in development. Dev. Sci. 10 54–60. 10.1111/j.1467-7687.2007.00564.x
    1. Weintraub S., Bauer P. J., Zelazo P. D., Wallner-Allen K., Dikmen S. S., Heaton R. K., et al. (2013). I. Nih Toolbox Cognition Battery (Cb): Introduction and pediatric data. Monogr. Soc. Res. Child Dev. 78 1–15. 10.1111/mono.12031
    1. Zhao M. L., Han X. W., Che L., Qi C. H., Ma X. N., Wang S. Z. (2022). The relative age effect and gender difference on fundamental motor skills in preschool children aged 4-5 years. Early Child Dev. Care. 10.1080/03004430.2022.2071870

Source: PubMed

3
Abonnieren